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Abstract 

Quality Assurance (QA) is critical in ensuring precision, safety, and effectiveness 

in proton radiotherapy, directly influencing patient outcomes. However, conventional QA 

methods are labour-intensive and time-consuming, challenging efficiency and workflow 

optimisation. Machine Learning (ML) models provide a transformative solution by 

automating complex QA processes, streamlining workflows, and enhancing operational 

efficiency without compromising care. This study investigates the application of ML 

models for automating QA in pencil beam scanning (PBS) proton therapy systems, 

underscoring the need for automated tools to optimise QA. 

The study was conducted using data from the IBA Proteus Plus Proton Therapy 

System. The accuracy of PBS delivery relies on critical spot dosimetric parameters such as 

spot size, spot position, spot symmetry, energy or range, and machine output calibration. 

Routine QA involves measuring these parameters using dedicated dosimeters. A log file 

records data during beam delivery, including spot position, charge, spot size, scanning 

magnet currents, beam current, gantry angle, and ionisation chamber readings. Even though 

log files monitor spot parameters in real time and trigger beam interruptions if deviations 

exceed predefined tolerances, discrepancies between log file data and dedicated dosimeter-

measured values can limit their direct use for QA. 

In the initial part of this study, the correlation between log file-recorded and 

scintillator-measured spot parameters is examined to understand the limitation and 

highlight the importance of log file analysis. Spot measurements were conducted using a 

Lynx2D scintillator detector by irradiating a 5-spot pattern across the energies ranging from 

70.18 MeV to 226.2 MeV at 12 gantry angles. A total of 9,000 spots were measured which 

recorded key parameters (spot size, position, and symmetry) along X-Y axes and major-

minor axes. These measurements were compared with the corresponding baseline values 

and also with log file recorded data to evaluate accuracy. The comparison between Lynx 

2D-measured spot parameters and their corresponding baseline values set during initial 

beamline commissioning showed excellent agreement. Maximum variations in X-axis spot 

size were 6.5 % at a range of 25.5 g/cm² (gantry angle 270°), while Y-axis variations were 

7.31 % at 30.5 g/cm² (gantry angle 30°). Standard Deviations (SD) were below 2.6 % (X-

axis) and 3 % (Y-axis), and root mean square errors (RMSEs) were 2.5 % (X-axis) and 2.9 
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% (Y-axis). Relative positional errors were well within 1 mm, and all variations met the 

AAPM TG-224 tolerance limits of 10 % for spot size and 1 mm for position, indicating 

machine stability and measurement reliability. 

In contrast, comparisons between log file-recorded and Lynx2D-measured 

parameters revealed significant discrepancies. Maximum differences in X-spot size (23.90 

%) were observed for the range 19.5 g/cm² (gantry angle 90°), and Y-spot size differences 

(21.04 %) observed for the range 4.1 g/cm² (gantry angle 240°). Both exceeded the TG-224 

tolerance of 10 %. Mean differences were 7.64 % (X-axis, SD: 5.62%) and 6.7 % (Y-axis, 

SD: 4.75 %), with maximum RMSEs of 9.5 % (X-axis) and 8.21 % (Y-axis). Positional 

errors are marginal to the 1mm tolerance, with maximum errors of 0.910 mm (X-axis) and 

1.610 mm (Y-axis). Hence the direct use of log file data for machine QA is limited due to 

significant discrepancies observed between Lynx2D-measured spot parameters and log 

file-recorded spot parameters.  

ML models, such as Artificial Neural Networks (ANNs), can effectively address 

the poor correlation between log file recorded data and measured data. These models 

leverage their ability to handle non-linear relationships and uncertainties, enabling more 

accurate predictions of spot dosimetric parameters. By bridging the gap between log file 

data and measured values, ML models enhance the reliability of machine QA and patient-

specific QA (PSQA). In the second part of this study, six ANN models using a Multi-Layer 

Perceptron (MLP) architecture to predict spot size and relative positional error were 

developed. The Input parameters for model development were log file recorded data and 

the output parameters were the Lynx2D-measured values. Each model featured one input 

layer, three hidden layers, and one output layer, with Rectified Linear Unit (ReLU) 

activation functions and the Adam optimiser. The dataset was split into 70 % training, 15 

% validation, and 15% testing subsets. Hyper parameter tuning yielded an optimal 

configuration: 100 epochs, three hidden layers, 30 neurons per layer, a batch size of 30, and 

a learning rate of 0.001. The Mean Squared Error (MSE) was used as the loss function. The 

models were developed using ML libraries TensorFlow and Keras in Python, with 

validation through metrics such as RMSE, R-squared, scatter plots, and Q-Q plots. Cross-

validation (k=5) confirmed robust generalisation, with RMSE values below 0.150 mm and 

R-squared above 0. 960. The ML models demonstrated high prediction accuracy. For spot 

size prediction, MSE values were below 0.0028 mm, RMSE was 0.050 mm, and R-squared 
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was 0.991. Relative positional error models achieved MSE of 0.001 mm, RMSE of 0.035 

mm, and R-squared of 0.996. Cross-validation and normality tests validated their reliability 

and generalisability. The models effectively bridged the gap between the log file data and 

measured values, enabling their use for QA. 

The final part of the study discusses the development and implementation of an in-

house script-based tool to integrate log file data extraction and ML models for predicting 

spot parameters for machine QA and patient-specific QA. The patient treatment beam 

contains usually thousands of spots. The measurement and analysis of each spot’s accuracy 

is practically impossible and time-consuming. The in-house script automates the analysis 

of all the spot dosimetric parameters from irradiation log files using ML models. The 

comparison of the Treatment Planning System (TPS) specified spot parameters with the 

delivered spot parameters using the automated tool for quick analysis and reporting. It 

processes the log and specification files to extract spot position and MU values, generating 

input data for the ML models to predict spot sizes. The script then produces comprehensive 

reporting of all the spot parameters including the total number of layers, spots per layer, 

MU values, and the percentage of spots with variations in size, position, symmetry, and 

MU. It highlights the percentage of spots with less than 10% size variation, 1 mm position 

variation, below 10 % symmetry, and less than 2 % MU variation. The tool was evaluated 

using routine QA data and post-irradiation log files from PSQA beams. Routine QA 

involved 5-spot pattern measurements across 30 energy levels (70.18–226.2 MeV) at 12 

gantry angles. Data from 1080 five-spot patterns across three gantries over three months 

were analysed. For PSQA, log file data from 935 PSQA beams (approximately 3 million 

spots) were evaluated. 

The results of the use of the in-house tool for machine QA data revealed notable 

discrepancies between measured and log file-recorded spot sizes, with mean differences 

ranging from 0.7 % to 4.0 % and standard deviations between 6.3 % and 8.6 % across 

gantry angles. Predicted spot sizes showed closer alignment, with mean differences ranging 

from 0.5 % to 1.25 % and standard deviations between 0.9 % and 1.6 %. Predicted spot 

symmetry deviated by less than 1 % from the measured values, and MU differences were 

within 1 % of the specified values. 

Analysis of 935 PSQA beams revealed promising results. Over 99.5 % of spot 

positions were within 1 mm accuracy. Mean positional errors were -0.021 mm (SD: 0.181 
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mm) along the X-axis and -0.002 mm (SD: 0.132 mm) along the Y-axis. ML models 

maintained strong performance in predicting spot sizes, with over 95 % of spots showing 

variations within 10 % of baseline values. RMSEs for spot size differences were 0.15 mm 

(X-axis) and 0.16 mm (Y-axis). Spot symmetry was within 10 %, and MU accuracy showed 

that 95 % of spots had variations below 2 %. 

This study highlights the effectiveness of integrating ML models with log file data 

to enhance the QA process in PBS proton therapy. By combining ML-based predictive 

models with an in-house tool, this approach provides an efficient and reliable alternative to 

traditional QA methods. The automation of log file analysis, prediction of spot parameters, 

and evaluation of dosimetric accuracy for both routine and PSQA significantly improves 

workflow efficiency, reduces the time required for QA, and minimizes the reliance on 

dedicated dosimeters. The strong correlation between ML predictions and dosimeter 

measurements, within established tolerance limits, further underscores the potential of this 

integrated tool to optimize dosimetric precision, enhance patient safety, and streamline the 

QA process, ultimately reducing the need for extensive manpower and improving overall 

operational efficiency in proton therapy. 
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Chapter 1 

Chapter 1- Introduction 

1.1. Radiotherapy 

Radiotherapy is an advanced cancer treatment modality that employs high-energy 

radiation to destroy or damage cancer cells [1]. This treatment approach originated in the 

early 20th century after Wilhelm Conrad Roentgen discovered X-rays in 1895 and the 

subsequent realization of their potential in cancer treatment. Radiotherapy works by 

directing radiation at cancer cells, damaging their deoxyribonucleic acid (DNA) and 

hindering their ability to replicate [2]. Healthy cells can typically recover from this damage, 

whereas cancer cells struggle to repair themselves, ultimately leading to death. 

Radiotherapy can be employed on its own or in combination with other treatments, such as 

surgery, chemotherapy, and immunotherapy, to enhance its effectiveness. Over time, 

technological and technical advancements have significantly enhanced radiotherapy's 

precision, effectiveness, and safety. A review by Chandra R. A. et al. [3] examined the 

advancements in radiotherapy techniques and imaging technologies in the current era. The 

introduction of techniques like Three-Dimensional Conformal Radiation Therapy (3D-

CRT) and Intensity-Modulated Radiation Therapy (IMRT) has enabled more precise 

targeting of tumours, reducing unnecessary radiation exposure to surrounding healthy 

tissues [4]. Advanced imaging techniques, such as Computed Tomography (CT), Magnetic 

Resonance Imaging (MRI), and Positron Emission Tomography (PET) scans, are employed 

to locate the tumour and guide radiation delivery accurately [5]. Radiotherapy is a 

continually evolving field driven by ongoing research and technological advancements to 

improve therapeutic effectiveness and minimize side effects. This progress highlights the 

essential role of radiotherapy in the multidisciplinary treatment of cancer, providing hope 

and better outcomes for patients globally. 

Radiotherapy employs a range of advanced techniques and modalities to enhance 

cancer treatment, including both conventional photon therapy and advanced particle 

therapy. For many years, conventional photon therapy, primarily X-rays and γ-rays, has 

been the cornerstone of radiotherapy. It uses linear accelerators to produce high-energy 

photons that penetrate tissues, targeting the tumour and affecting nearby healthy tissues. 

Techniques such as 3D-CRT and IMRT have enhanced the accuracy of photon therapy by 

shaping the radiation dose to match the tumour and adjusting the beam intensity 

accordingly. However, due to the inherent properties of photons, some radiation inevitably 
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passes through the tumour and continues to deposit energy in the surrounding healthy 

tissues, which can cause side effects [6]. Despite this limitation, photon therapy remains 

highly effective for treating various types of cancer and is widely accessible. In contrast, 

advanced particle therapy, such as proton and carbon ion therapy, provides superior dose 

distribution because of the unique characteristics of charged particles [7]. These particles 

have the distinct advantage of the Bragg peak, where the highest energy deposition occurs 

just before the particles stop, enabling a highly localized delivery of radiation with minimal 

exit dose. Proton therapy is especially beneficial for treating tumours located near critical 

structures or in paediatric patients, as it minimizes the risk of radiation-induced secondary 

cancers [8-10]. Carbon ion therapy, which has a higher linear energy transfer (LET), inflicts 

more complex and irreparable DNA damage on cancer cells [11]. The increased biological 

effectiveness of carbon ions allows for greater tumour control with potentially fewer 

treatment sessions. As a result, although conventional photon therapy is still widely used 

and effective for many types of cancer, particle therapy marks a significant advancement 

by offering greater precision and reduced toxicity. A study by Tinganelli W. et al. [12] 

found that the radiobiological features of carbon ion therapy are more effective in treating 

radio-resistant hypoxic tumours. This expands the therapeutic window and improves 

patient outcomes. Additionally, integrating advanced imaging techniques and real-time 

monitoring enhances the accuracy and safety of both photon and particle therapies, 

highlighting the ongoing evolution of radiotherapy in the quest for better cancer treatment. 

Figure 1.1 illustrates the differences in dose distributions across various radiotherapy 

modalities for a prostate cancer patient. 

 Figure 1.1: Evolution of Radiotherapy Treatment Planning from 1935 to 2010, 

Demonstrating Dose Distributions for Prostate Cancer Using Various External Radiation 

Therapy Modalities from 200 kV X-ray to Carbon Ions (Thariat, J et al 2013 [1]). 
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1.2 Particle therapy 

The use of accelerated protons, carbons, or other heavy ions for cancer treatment is 

called particle therapy [13-14]. The protons and heavy ions interact with matter and deposit 

maximum energy in the Bragg peak position. The maximum dose deposition by the sharp 

Bragg peak ensures tumour dose coverage and better normal tissue sparing than 

conventional photon-based radiotherapy. The high Radio Biological Effect (RBE) and LET 

near the Bragg peak provide additional biological advantages to particle therapy. Currently, 

proton and carbon ion therapy are the advanced particle therapy systems used worldwide. 

1.2.1 Proton therapy  

The therapeutic use of protons was introduced by Wilson et al. In 1946 [15]. The 

physical properties, such as Bragg peak and zero exit dose, enhanced the application of 

proton therapy. Currently, there are more than 100 centres that use proton therapy for 

cancer treatment. Most proton therapy systems use cyclotron or synchrotron-based particle 

acceleration and dedicated energy selection and transport systems to ensure accurate dose 

delivery to the patient. Passive scattering and Pencil Beam Scanning (PBS) techniques are 

the most used proton therapy delivery techniques [16]. In the passive scattering system, the 

mono-energetic proton beam passes through scattering foils and a rotating range 

modulation wheel to create a uniform beam in the lateral direction, and the target 

conformity in the longitudinal direction is ensured by patient-specific range compensator 

and collimator used for lateral field conformity. The technique is widely used for treating 

many treatment sites [17].  However, passive scattering has disadvantages, such as needing 

patient-specific and beam-specific range compensators and collimators. This increases 

treatment time and lateral penumbra due to secondary particles from interactions with the 

range modulator and scattering materials.  

 The Paul Scherrer Institute (PSI) introduced the PBS technique of particle therapy 

[18]. The PBS technique uses different technology compared to passive scattering. In a 

cyclotron-based PBS system, the mono-energetic proton beam produced by the cyclotron 

passes through a dedicated degrader wheel with varying blocks of materials which produce 

different energy proton beams. A proton beam with an energy range of 70 MeV to 250 

MeV is commonly used for clinical treatment [19]. The mono-energetic pencil beams pass 

through an energy selection system and many dipole and quadrupole magnets to ensure 
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proper beam size, energy and position. Finally, the pencil beams enter the gantry head 

called the nozzle. The nozzle has two scanning magnets, which defect each pencil beam to 

different X and Y directions to cover the tumour lateral shape and deliver different energy 

pencil beams to ensure longitudinal dose conformity to the tumour. Compared to a passive 

scattering system, the PBS system does not require dedicated range compensators and 

collimators. The Spread-Out Bragg Peak (SOBP) is created by overlapping multiple mono-

energetic proton beams to cover the tumour volume and ensure minimal dose to 

surrounding normal tissues. The PBS technique is a very fast and conformal treatment 

compared to passive scattering systems.  

1.2.2 Carbon ion therapy 

The accelerated carbon ions interact with matter in a way that is almost similar to 

proton beams. However, the carbon ions have a sharper Bragg peak width and higher RBE 

and LET distribution than proton therapy.  Carbon ions are used for radiotherapy because 

of their physical and biological properties. The invention of the Synchrotron by Vladimir 

Veksler [20] in 1944 boosted the use of particles for radiation therapy. The first carbon ion 

therapy was done by the Heavy Ion Medical Accelerator in Chiba (HIMAC) in 1994 [21]. 

Due to the high LET and RBE of carbon ions, the damage created by carbon ions clustered 

in DNA overwhelms the cellular repair system. The carbon ion therapy also uses passive 

scattering and active scanning systems for beam delivery. Carbon ion therapy is very 

efficient for dose escalation to radio-resistant tumours.  

1.2.3. Helium and other heavy ion therapy 

The helium ion shows intermediate physical and biological properties between 

proton and carbon ion therapy. The lateral penumbra and range straggling are less with 

helium ions than protons and high RBE and LET. The first Helium ion therapy started at 

Lawrence Berkeley National Laboratory (LBNL) in 1994 [22]. The Heidelberg Ion Beam 

Therapy Centre (HIT) have started raster scanning helium ion therapy [23]. The high cost 

of construction and operation of particle therapy is the limiting factor of particle therapy. 

Protons and carbon ions gain popularity in particle therapy in the early 90’s. Between 1975 

and 1992, the potential of various heavy ions, including helium, pions, neon, and argon, 

was investigated for radiotherapy in a laboratory setup at the LBNL [24]. Currently, only 

protons, carbon, and helium ions are used in clinical radiotherapy. In the future, 

advancements in technology and reductions in cost are expected to expand the use of other 
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heavy ions in particle therapy. Figure 1.2 represents the depth dose distribution of different 

particles used for particle beam therapy.  

Figure 1.2: The depth dose distribution of different charge particles used for particle 

therapy. Pion 50MeV, Carbon ion 300MeV/u, Proton 175MeV, and Helium 170MeV/u.  

1.3 Pencil Beam Scanning Proton Therapy System 

The introduction of the PBS technique in proton therapy has significantly enhanced 

the utility of proton therapy through various technological advancements. PBS allows for 

highly precise and accurate dose delivery by scanning a narrow proton beam across the 

tumour in a controlled manner, reducing the treatment time and improving efficiency. PBS 

also offers superior accuracy in targeting tumours, especially those with complex shapes or 

located near critical structures, minimizing damage to surrounding healthy tissues. These 

benefits make PBS a superior and more efficient option in modern proton therapy, offering 

improved treatment outcomes and a better quality of life for patients. 

The PBS proton therapy technique utilizes two types of particle accelerators for 

proton beam production: Cyclotrons and Synchrotrons. Most commercial systems employ 

cyclotron-based systems for beam production. However, centres that use multiple particles 

for therapy typically use synchrotrons for beam production. Figure 1.3 shows the IBA 

Proteus Plus machine treatment room. The dosimetric data measurement for this thesis was 

obtained from the IBA Proteus Plus proton therapy machine installed at ACTREC, Tata 

Memorial Centre, Mumbai. The Proteus Plus uses an isochronous cyclotron. The system 
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has multiple components, including the Beam Production System (BPS), Energy Selection 

and beam Transport System (ESBTS), and Beam Delivery System (BDS). 

Figure 1.3: The IBA Proteus Plus treatment gantry installed at National Hadron Therapy 

Centre, ACTREC, Tata Memorial Centre, Mumbai. 

1.3.1 Beam production system (BPS) 

The BPS predominantly consists of the cyclotron and the beam extraction system. 

The 230 MeV isochronous cyclotron accelerates protons to high energies utilizing a 

combination of magnetic and electric fields (Figure 1.4). Protons, introduced from a 

hydrogen gas ion source into the cyclotron's central region, are constrained to move in 

circular orbits by a static magnetic field. An alternating electric field, produced by two D-

shaped electrodes (Dees), accelerates the protons each time they traverse the gap between 

the Dees [25]. The isochronous design ensures that the magnetic field strength increases 

with radius, maintaining a constant cyclotron frequency for protons at all radii. This 

synchronization enables the protons to gain energy and spiral outward until they reach 230 

MeV. Upon reaching this energy, the protons are extracted via a deflector, which diverts 

them from their circular trajectory into the energy selection and transport system. The 
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cyclotron can extract a maximum beam current of 300 nA and a minimum current of 1 nA. 

Key components include the ion source, Radio Frequency (RF) source, main coil, and 

deflector. 

The RF system generates the alternating electric field necessary for proton 

acceleration. It includes RF cavities, or Dees, positioned within the cyclotron’s vacuum 

chamber. The RF system produces an oscillating electric field between the Dees, with an 

oscillator generating a signal that matches the cyclotron's resonance frequency. This 

ensures that the electric field oscillates in synchrony with the protons' circular motion. RF 

amplifiers then boost this signal to the power required to create a sufficiently strong electric 

field to effectively accelerate the protons with each pass through the Dee gap. 

Figure 1.4: The Cyclotron C230 installed at National Hadron Therapy Centre, ACTREC, 

Tata Memorial Centre, Mumbai. 

The main coil produces the magnetic field that confines protons to their circular 

paths during acceleration. This is achieved with large electromagnets forming the main 

coil, which generates a uniform magnetic field perpendicular to the proton's plane of 

motion. Powered by a high-current supply, the main coil maintains the necessary magnetic 

field strength for proton guidance throughout the acceleration process. After acceleration, 
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the proton beam is deflected by a dedicated deflector, passes through quadrupole magnets, 

and proceeds to the energy selection system. 

1.3.2 Energy Selection and Beam Transport System (ESBTS) 

The ESBTS is responsible for converting the 230 MeV fixed-energy beam produced 

by the cyclotron into a variable energy beam, adjustable between 70.18 MeV and 226.2 

MeV. Additionally, the energy selection devices in the ESBTS are designed to block 

unwanted beam particles from proceeding through the beam line. They also verify and 

regulate the absolute energy, energy spread, and emittance of the beam as it exits the energy 

selection section and enters the static beam line. This control is achieved using a 

combination of quadrupole and dipole magnets, along with an energy degrader, collimators, 

and slits. 

The degrader wheel is a rapidly adjustable, servo-controlled rotating variable-

thickness cylinder. The diagram of the degrader wheel is given in figure 1.5. The purpose 

of the degrader wheel is to degrade the energy of the beam produced from the cyclotron to 

the clinically required energies, which range from 70.18 MeV to 226.2 MeV. The rotation 

of the wheel is synchronized to pass the proton beam through the variable thickness portion 

of the wheel. The beam energy is changed in function of the variable thickness of the block 

of absorbing material. The total time needed to adjust the degrader's orientation to achieve 

different beam energies is less than one second. This adjustment is facilitated by a stepper 

motor that controls the degrader's rotation.  

 

 

 

 

 

 

Figure 1.5: The Degrader wheel with different density materials to degrade energy from 

226.2MeV to 70.18 MeV (Picture courtesy to IBA user Manual). 
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After adjusting the beam energy with the degrader wheel, the beam will exhibit 

divergence and angular spread. Dedicated slits and a collimator assembly are employed to 

eliminate beams that are too off-centred or have excessively large divergence angles. 

Following the collimator assembly, the beam passes through multiple quadrupole and 

bending magnets to reach the beam delivery system. The quadrupole magnets ensure the 

beam remains centred in the beam-transporting tube, while the bending magnets redirect 

the beam as needed. Finally, the beam enters the beam delivery system. The figure 6 shows 

the components in the energy transport system of the IBA Proteus Plus machine. 

Figure1.6: The energy selection system of the IBA Proteus Plus machine.  

1.3.3 Beam Delivery System (BDS) 

The BDS consists of a rotating gantry and a nozzle. The beam transport line 

connects to the rotating gantry using a coupler known as a rotary feedthrough. Figure 1.7  

 

 

 

 

 

 

 

Figure 1.7: Rotary feedthrough. 
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shows the rotary feedthrough accessory. This rotary feedthrough provides a vacuum 

coupling that allows the static beamline to transition into a rotating beamline, which is 

essential for the gantry's rotation. 

Once the beam enters the rotating gantry, it encounters multiple quadrupole 

magnets that focus the beam. A 1350 large bending magnet then bends the beam, directing 

it towards the nozzle. The entire gantry assembly is capable of 3600 rotations and is 

connected to a rotating assembly, allowing for precise beam direction and flexibility in 

treatment angles. Figure 1.8 represents the rotating gantry assembly.  

The nozzle consists of an initial Ionization Chamber (IC1), followed by a 

quadrupole magnet. The IC1 monitors the spot position accuracy to ensure precise 

targeting. The quadrupole magnet focuses the beam along the central line. After the 

quadrupole magnet, there are two scanning magnets used to deflect the pencil beam in the 

X and Y directions as required for patient treatment. The deflected beam then passes 

through another set of ICs known as IC23. The IC23 monitors record the spot size and 

position of each beam spot. Finally, the beam is delivered to the patient, who is positioned 

using the patient positioning system to ensure accurate and effective treatment. 

 

 

 

 

 

 

 

 

 

Figure 1.8: The Schematic Diagram of the rotating gantry. The bending magnets and 

rotating system are depicted in the figure (Picture courtesy to IBA user Manual). 
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1.4 Quality Assurance of Pencil Beam Scanning Proton Therapy 

Quality assurance (QA) in PBS proton therapy is essential for ensuring accurate and 

safe treatment administration [26]. The QA process encompasses thorough evaluations and 

adjustments of the proton beam's energy, intensity, and spatial accuracy. This includes 

routine machine performance assessments, verification of patient-specific treatment plans, 

and dosimetric evaluations using sophisticated detectors and imaging technologies. 

Accurately controlling the proton beam's parameters is crucial for optimising tumour 

eradication while minimising harm to surrounding healthy tissues. Comprehensive QA 

procedures are vital for detecting and rectifying any discrepancies from the prescribed 

treatment plan, thereby ensuring optimal patient outcomes and upholding the high 

standards of proton therapy.  

The American Association of Physicists in Medicine (AAPM) Task Group (TG) 

224 report [27] recommends standardized QA procedures for PBS proton therapy systems. 

The report outlines QA protocols to be performed on a daily, weekly, monthly, and annual 

basis to ensure the optimal performance and safety of the proton therapy system. 

Specifically, the report highlights the importance of monitoring key dosimetric parameters 

for PBS systems. These include the energy of each proton beam, the spot size in both the 

X and Y directions, spot symmetry, spot position accuracy, and dose accuracy. Regular 

checks and calibrations of these parameters are essential to maintain the precision and 

effectiveness of PBS proton therapy, ensuring that the treatment is delivered accurately and 

consistently to achieve the best possible patient outcomes. 

1.4.1 Mechanical QA 

Mechanical QA in PBS proton therapy includes the performance evaluation of all 

mechanical parts, such as the patient positioning system, gantry, snout, imaging system, 

and laser system. Specifically, it involves assessing the gantry angle accuracy of the 

rotating gantry, the snout position accuracy, and the table translational and rotational 

movement accuracy. Additionally, the accuracy of the laser system and its coincidence with 

the machine isocentre must be evaluated to ensure proper patient positioning. 

The mechanical accuracy of each component is crucial to ensuring accurate patient 

positioning before beam delivery. This precision is vital for delivering the proton beam to 

the exact location as planned, minimizing radiation exposure to surrounding healthy 
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tissues. Mechanical QA is integral to the daily, monthly, and annual QA protocols for PBS 

systems. Regular testing and verification of mechanical components help maintain the high 

standards required for effective and safe proton therapy treatments. By adhering to stringent 

mechanical QA procedures, PBS proton therapy systems can achieve the precise and 

conformal radiation doses necessary for optimal patient outcomes. 

1.4.2 Dosimetric QA 

The dosimetric QA in a PBS system includes the measurement of beam energy, spot 

size, spot position, and output. Any variation in the range of each spot in the PBS beam can 

lead to a shift in the Bragg peak position. If the actual range is less than the set value, the 

distal edge of the target will be under-dosed. Errors in the range can result in significant 

dose differences at the target's distal edge. Similarly, variations in spot size can cause 

inhomogeneous dose distributions, leading to underdoing or overdosing within the target 

volume. Regular and accurate dosimetric QA ensures that the proton therapy system 

delivers the correct dose distribution as planned, maintaining the effectiveness and safety 

of the treatment. By meticulously measuring and verifying these parameters, any deviations 

can be identified and corrected promptly. 

1.4.3 Range or Energy  

The energy of a proton beam refers to its initial kinetic energy, which determines 

how deeply the beam can penetrate tissue. As the energy of the protons increases, their 

penetration depth also increases. The relationship between the energy and the range of the 

proton beam is directly proportional, meaning that higher-energy protons achieve greater 

depths. The range is defined as the distal depth where 90% of the proton beam's energy is 

deposited. This relationship between range and energy can be quantitatively described by 

a specific equation (Equation 1.1).  

𝑅𝑎𝑛𝑔𝑒(𝑐𝑚) = 𝐸𝑥𝑝(𝑎 ∗ ln(𝐸)3 + 𝑏 ∗ ln(𝐸)2 + 𝑐 ∗ ln(𝐸) + 𝑑)                                 (1.1) 

Where, E- Energy in MeV. a, b, c and d are the coefficients.  a=-0.0133, b=0.15248, 

c=1.2193, and d=-5.5064.  

The range of each energy pencil beam in proton therapy is typically measured using 

large-area parallel plate ionization chambers through two main methods. The first method 
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involves a single parallel plate chamber to measure dose at various depths and plot the 

integrated depth dose (IDD) curve, from which the R90 range the depth where 90% of the 

proton's energy is deposited is determined. The second method employs a Multi-Layer 

Ionization Chamber (MLIC), a specialized array detector with multiple stacked chambers 

that simultaneously measures dose at different depths. The data from the MLIC is combined 

to produce the IDD curve and determine the proton range.  

1.4.4 Spot size 

In pencil beam scanning proton therapy, determining the spot size of the beam is 

essential for accurately delivering radiation doses to tumours while minimizing damage to 

surrounding healthy tissues. The pencil beam typically exhibits a Gaussian distribution of 

intensity, where the intensity is highest at the centre and decreases symmetrically when 

moving away from it.  Figure 1.9 plots the Gaussian distribution of the spot. In PBS, the 

spot size is defined by the width of one standard deviation (σ) or sigma of this Gaussian 

distribution, called sigma. The spot size is typically measured in air using dedicated 

scintillator detectors. Equation 1.2 shows the relationship between Full Width Half 

Maximum (FWHM) and sigma.  

𝐹𝑊𝐻𝑀 = 2.355 𝜎                                                                     (1.2) 
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Figure 1.9: The representation of the spot size of a Pencil Beam Scanning (PBS) Proton 

therapy beam. (a) Schematic representation of a typical spot in PBS, (b) 1D Gaussian 

distribution of the spot. 

The spot size is energy-dependent. For lower energy beams, the spot size is larger 

due to increased lateral scattering of protons in air. In contrast, for higher energy beams, 

the spot size is smaller because there is less lateral scattering. This energy dependence must 

be considered in treatment planning to ensure accurate dose delivery and effective tumour 

targeting. 
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1.4.5 Patient-Specific QA 

The patient-specific QA (PSQA) is the procedure to ensure the dose delivery 

accuracy of each patient treatment plan before the start of actual treatment. The PSQA 

compare the dose distribution calculated in the Treatment Planning system (TPS) with the 

dose distribution measured using dedicated dose measurement devices.  The conventional 

method of PSQA in a PBS system is to measure dose fluence using a dedicated ionisation 

array detector compare the fluence with the TPS dose fluence and perform gamma analysis 

[28]. Gamma analysis is a process of comparing two dose fluence matching. It utilizes two 

main criteria: Distance-to-Agreement (DTA), which assesses the spatial proximity of 

measured and planned dose points, and Dose Difference (DD), which evaluates the 

discrepancy in dose levels. The results are represented as a gamma index, where a passing 

rate indicates successful treatment delivery.  

In the PBS system, the conventional method of PSQA involves measuring dose 

fluence using a dedicated ionization array detector. This method compares the 2D fluence 

measured for individual beams. A study by Zhu XR et al. [29] involving 249 prostate cancer 

patients treated with a spot-scanning proton therapy system found that the gamma index 

was greater than 96% for all patients when performing PSQA with a 2D detector array. 

Another method of PSQA is Monte-Carlo (MC) based independent dose calculation 

algorithms [30-31].  

1.5 Log file analysis 

Log files in radiotherapy are vital records that capture comprehensive data on 

various parameters and events during each beam irradiation session. These logs include 

details such as machine settings, beam characteristics, patient information, and system 

events. The use of log files in radiotherapy includes analysis of the accuracy of beam 

delivery, statistical data analysis and also used for retrospective data analysis and audit. 

They allow for the identification of trends or patterns that may indicate issues with 

treatment delivery or equipment performance. In the event of an incident or adverse 

outcome, log files can serve as an essential resource for investigating the root cause and 

implementing corrective actions. 

 Log files play a critical role in photon therapy by recording detailed information 

about the treatment delivery process. These files capture the positions of Multi-Leaf 
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Collimators (MLCs) at each control point, the monitor units (MU) delivered for each MLC 

segment, and the gantry and collimator angles, along with other beam-related parameters. 

Numerous studies have leveraged these log files in conjunction with MC simulations for 

routine QA and PSQA [32-33]. 

Similarly, in proton therapy, log files are equally essential as they document vital 

data regarding the beam's energy, position, and various delivery parameters. This 

information is crucial for ensuring the precision and accuracy of the treatment. The 

potential of log files as a tool for routine QA and PSQA in proton therapy is increasingly 

recognized. 

In PBS proton therapy, log files capture data at intervals of every 200 microseconds, 

resulting in extensive records for each spot. Each spot's log file may contain multiple rows 

of data detailing parameters such as the position and size of the spot as measured by 

different transmission ICs, the current and voltage of scanning magnets, the charge 

collected in primary and secondary dose meters, the beam current, and the set range value. 

After each spot is delivered, these parameters are meticulously recorded. The spot position 

and MU data are particularly valuable, as they can be used to independently re-calculate 

the delivered dose using MC algorithms. The log file data is used for a detailed audit of the 

beam delivery. One limitation of log file data is the inherent uncertainty associated with 

the recorded information. This uncertainty can impact the accuracy of dosimetric 

evaluations and QA processes that rely on log files. Therefore, further studies are required 

to mitigate these uncertainties, allowing log file data to be used more effectively and 

confidently in accurate dosimetric assessments and QA in proton therapy.  

1.6 Machine Learning models 

Machine Learning (ML) is a subset of Artificial Intelligence (AI) that focuses on 

developing algorithms and statistical models that enable computers to learn from and make 

predictions based on data. According to Rahmani AM et al [34], ML is a field of study that 

allows computers to learn without being explicitly programmed. Instead of being explicitly 

programmed to perform a task, ML systems use patterns and insights derived from existing 

data to improve their performance over time. ML involves training a model on a dataset, 

allowing it to identify relationships and patterns. Once trained, the model can be applied to 
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new, unseen data to make predictions or decisions. There are several types of ML, including 

supervised learning, unsupervised learning, and reinforcement learning.  

1.6.1 Supervised Learning 

Supervised learning is an ML approach where models are trained on labelled data, 

pairing input with the correct output to make accurate predictions on new data [35]. This 

technique finds broad application across various fields, such as image classification, where 

models categorize images into predefined groups, or spam detection, where systems 

differentiate between spam and non-spam emails using labelled examples. In sentiment 

analysis, models learn to classify text sentiment, while predictive maintenance uses labelled 

sensor data to foresee equipment failures. Medical diagnosis models, trained on labelled 

patient data, aid in disease identification, and speech recognition systems convert spoken 

language into text. Fraud detection and house price prediction also benefit from supervised 

learning, using labelled data to flag suspicious activities and estimate property values. In 

radiotherapy, supervised learning enhances treatment accuracy, efficiency, and QA. 

Models are trained to segment tumours and Organs-At-Risk (OARs) in imaging scans using 

manually labelled data, optimise radiation distribution through dose prediction models, and 

automate treatment planning based on historical cases. Additionally, supervised learning is 

crucial in predicting patient outcomes and identifying potential errors in treatment delivery 

by analyzing log files, ensuring precise and effective radiation delivery. These applications 

streamline radiotherapy processes, leading to more accurate treatments and improved QA. 

1.6.2 Unsupervised Learning 

This method involves training models on data without labelled outcomes. The goal 

is to identify patterns or groupings within the data, such as clustering similar data points 

together [36]. Unsupervised learning is a powerful tool in radiotherapy, enabling the 

discovery of patterns and relationships in data without the need for labelled examples. It is 

particularly useful for clustering patient data based on characteristics like tumour type or 

treatment response, which can inform personalized treatment strategies. In QA, 

unsupervised learning helps detect anomalies in treatment delivery by identifying 

deviations from expected patterns, enhancing safety. Additionally, dimensionality 

reduction simplifies complex imaging data, making it easier to analyse and visualize. 

Unsupervised learning also aids in feature extraction from medical images, identifying 
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regions of interest that are crucial for treatment planning, ultimately contributing to more 

effective and individualized radiotherapy. 

1.6.3 Reinforcement Learning 

In this type of learning, an agent interacts with an environment and learns to make 

decisions by receiving rewards or penalties based on their actions. The agent aims to 

maximise its cumulative reward over time [37]. Reinforcement learning is increasingly 

valuable in radiotherapy for optimizing treatment strategies through trial and error. This 

approach involves training models to make decisions by receiving feedback in the form of 

rewards or penalties based on their actions. In radiotherapy, reinforcement learning can be 

used to enhance treatment planning by learning from simulations to determine the most 

effective radiation doses and delivery techniques. For instance, it can optimize dose 

distribution by continuously adjusting parameters to minimize damage to healthy tissues 

while maximizing tumour targeting. Additionally, reinforcement learning is applied to 

adapt treatment plans in real time based on patient responses and evolving clinical 

conditions. This method improves the precision and efficacy of radiotherapy by enabling 

dynamic adjustments and personalized treatment approaches. 

1.7 Research Problem 

Proton beam therapy represents a cutting-edge advancement in radiotherapy, 

utilizing the PBS technique that involves irradiating thousands of proton pencil beam spots 

to target tumours precisely. The PBS system involves a highly sophisticated process of 

beam production using a cyclotron, followed by precise beam selection and transport. This 

is achieved through intricate components, including multiple quadrupole magnets for 

focusing and bending magnets for beam steering. Additionally, the system incorporates 

complex beam-tuning mechanisms and dosimeters to ensure precise control over beam 

parameters. However, the intricate nature of the PBS technique necessitates systematic and 

rigorous QA methods. Conventional PBS-QA methods are fraught with challenges. They 

typically use dedicated dosimeters to measure critical parameters such as energy, spot size, 

position, symmetry, and MU accuracy. These conventional methods are time-consuming 

and labour-intensive, posing a significant burden on physicists and dosimetrists. The 

conventional methods’ inherent complexity and the extensive effort needed highlight the 
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need for more efficient solutions to streamline the machine QA and PSQA processes in 

proton beam therapy. 

In recent years, numerous studies have explored using log files in photon and proton 

radiotherapy systems. Siochi et al. [38] utilised log files from a photon therapy linear 

accelerator to automate the physics checks for plan delivery accuracy. Similarly, Rangaraj 

D et al. [39] investigated the effectiveness of Linac log file data for analysing data transfer 

and evaluating beam delivery accuracy across 914 patient cases. Many other studies [40-

41] have also assessed the potential of irradiation log file data for machine performance 

evaluation. This approach significantly reduces the time required compared to traditional 

measurement methods. Another use of log file data in photon therapy is to verify the 

accuracy of MLC leaf positions and MU. Stell AM et al [42] and Chow V.U. et al. [43] 

studied the accuracy of log file-recorded MLC positions and MU compared with the values 

specified by the TPS. Their results are promising and contribute significantly to the 

automation of quality assurance for Linac. Apart from the application in routine QA, the 

log files are used PSQA in Linac. The MC algorithm computed the delivered dose using 

the log file recorded MLC positions and MU information. The results are comparable to 

the measurement-based PSQA [44,45]. The potential use of log files in Linac-based photon 

radiotherapy is well-established for routine and patient-specific QA.  

The log file data is also used in the PBS proton therapy to compare the spot position 

and MU values with the TPS-specified values. A study by Li H et al [46] concludes that 

the log file recorded spot position and MU values are accurate and precise enough to use 

for routine QA. Later many studies used the log file recorded spot position and MU values 

for evaluating the PBS beam delivery accuracy using the MC algorithm to calculate the 

delivered dose and compare it with the planned dose for PSQA [47,48]. All the studies used 

only spot position and MU information from the log file for dose evaluation. The spot size 

and symmetry are also a critical parameter that can cause dose differences if the values 

deviate from the baseline values. Also, there are no studies to mitigate the uncertainties 

associated with log file data. A study by, Rana S et al [49] evaluated the dose difference 

with different percentage differences in spot size. The spot size variation of more than 10 

% from the baseline causes a significant dose difference. The evaluation of all spot 

dosimetric parameters such as spot size, symmetry, position, and MU is important to ensure 

machine beam delivery accuracy as well as patient treatment accuracy.  
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The existing research on log file data in PBS proton therapy has primarily focused 

on spot position and MU information, leaving significant gaps in the analysis of other 

crucial spot parameters. Few studies have examined the accuracy of log file data or 

explored its correlation with values measured by dedicated detectors. Additionally, there is 

limited research addressing methods to mitigate uncertainties in log file data used for 

machine and PSQA. These gaps hinder the reliability and effectiveness of log file data in 

QA processes, which are essential for ensuring precision and safety in proton therapy. 

To date, there has been limited development of a comprehensive method to analyse 

the dosimetric accuracy of each spot used in patient treatment, particularly for spot size, 

symmetry, MU, and position. This presents an exciting opportunity to establish a systematic 

approach for evaluating these critical parameters, ensuring enhanced precision and 

reliability in proton therapy 

Contemporary research increasingly emphasises the potential of ML applications in 

radiotherapy QA. ML models offer a promising solution by automating QA tasks in proton 

therapy, including machine QA and PSQA, utilizing the vast amounts of data captured in 

log files. By doing so, ML can reduce the time and manpower required for QA processes 

while improving the accuracy of dosimetric predictions and addressing uncertainties. 

Despite this potential, the use of ML in this context remains underexplored, presenting a 

valuable opportunity to enhance treatment outcomes and streamline workflows in proton 

therapy. 

1.8 Objective of the study 

This study focuses on implementing ML to automate QA protocols in PBS proton 

therapy. The irradiation log file is a potential tool for developing various ML models to 

automate machine QA and PSQA workflow. The study begins with the measurement of 

spot dosimetric parameters and analysis of the corresponding log file data recorded in the 

IBA Proteus Plus PBS proton therapy system installed at Advanced Centre for Treatment 

Research and Education in Cancer(ACTREC), Tata Memorial Centre, Mumbai, India. 

during beam irradiation and studies the correlation between the log file data and the data 

measured using dedicated dosimeters. The scintillator detector measures proton spot 

dosimetric parameters. After studying the correlation between the log file and detector 
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measured data, the study develops ML models to predict PBS spot size in different axes 

such as X, Y, major, and minor axes and also predict the relative positional error of each 

spot. The ML models were validated using different statistical tools. The developed ML 

models can predict spot dosimetric parameters using the irradiation log file as an input 

parameter. The models can help to automate the routine QA of PBS spot measurement.  

Another study objective is automating the PSQA workflow using ML models. The 

PBS machine is capable of delivering proton beams in different gantry angles. A single 

beam contains thousands of pencil beams with different energy and MU per spot. The 

complex beam delivery accuracy was confirmed using PSQA. In the conventional method 

of PSQA, the dose is measured at different depths for each beam, and the dose plane is 

compared with the dose plane exported from the TPS. In this study, the ML-based 

automated method was developed to alternate the PSQA. In the automated model, the ML 

models predict the spot size of all spots used in the patient treatment beam and the spot 

position, range, and MU information of each spot compared with TPS-specified values. 

The in-house Python script is used to extract data from patient-specific irradiation files, and 

the data is inputted into the ML models to predict spot parameters and evaluate the accuracy 

of each delivered spot. This method needs only the irradiated beam log file as input data to 

the model. No need for dedicated dosimeter measurement. 

In summary, this study successfully demonstrates the potential of ML to automate 

QA processes in PBS proton therapy. By utilising irradiation log files and dedicated 

dosimetric measurements, the study develops and validates ML models capable of 

accurately predicting spot dosimetric parameters. These models offer a significant 

advancement in streamlining routine QA, reducing the need for time-consuming and 

resource-intensive manual measurements. Furthermore, the study's automated approach to 

PSQA presents a promising alternative to conventional methods, enabling efficient and 

accurate verification of complex beam deliveries without the need for additional dosimetric 

tools. These innovations pave the way for enhanced efficiency, reliability, and safety in 

proton therapy, ultimately contributing to improved patient outcomes. 

 

 



 

27 
 

Chapter 1 

1.9 References 

1. Thariat J, Hannoun-Levi JM, Sun Myint A, Vuong T, Gérard JP. Past, present, and 

future of radiotherapy for the benefit of patients. Nature reviews Clinical oncology. 

2013 Jan;10(1):52-60. 

2. Brailsford JF. Roentgen's Discovery of X rays: Their Application to Medicine and 

Surgery. The British journal of radiology. 1946 Nov 1;19(227):453-61. 

3. Chandra RA, Keane FK, Voncken FE, Thomas CR. Contemporary radiotherapy: 

present and future. The Lancet. 2021 Jul 10;398(10295):171-84. 

4. Bakiu E, Telhaj E, Kozma E, Ruçi F, Malkaj P. Comparison of 3D CRT and IMRT 

tratment plans. Acta Informatica Medica. 2013;21(3):211. 

5. Lecchi M, Fossati P, Elisei F, Orecchia R, Lucignani G. Current concepts on 

imaging in radiotherapy. European journal of nuclear medicine and molecular 

imaging. 2008 Apr;35:821-37. 

6. Wang K, Tepper JE. Radiation therapy‐associated toxicity: Etiology, management, 

and prevention. CA: a cancer journal for clinicians. 2021 Sep;71(5):437-54. 

7. Durante M, Orecchia R, Loeffler JS. Charged-particle therapy in cancer: clinical 

uses and future perspectives. Nature Reviews Clinical Oncology. 2017 

Aug;14(8):483-95. 

8. Mohan R. A review of proton therapy–Current status and future directions. 

Precision radiation oncology. 2022 Jun;6(2):164-76. 

9. Thomas H, Timmermann B. Paediatric proton therapy. The British journal of 

radiology. 2020 Mar 1;93(1107):20190601. 

10. Olsen DR, Bruland ØS, Frykholm G, Norderhaug IN. Proton therapy–a systematic 

review of clinical effectiveness. Radiotherapy and oncology. 2007 May 

1;83(2):123-32. 

11. Wang X, Chen X, Li G, Han X, Gao T, Liu W, Tang X. Application of carbon ion 

and its sensitizing agent in cancer therapy: A systematic review. Frontiers in 

Oncology. 2021 Jul 5;11:708724. 

12. Tinganelli W, Durante M. Carbon ion radiobiology. Cancers. 2020 Oct 

17;12(10):3022. 

13. Schaub L, Harrabi SB, Debus J. Particle therapy in the future of precision therapy. 

The British journal of radiology. 2020 Oct 1;93(1114):20200183. 

14. Hwang EJ, Gorayski P, Le H, Hanna GG, Kenny L, Penniment M, Buck J, Thwaites 

D, Ahern V. Particle therapy tumour outcomes: an updated systematic review. 

Journal of medical imaging and radiation oncology. 2020 Oct;64(5):711-24. 

15. Wilson RR. Radiological use of fast protons. Radiology. 1946 Nov;47(5):487-91. 

16. Bussiere M, Daartz J, Verburg J, Depauw N, Kooy HM, Loeffler JS, Chapman PH, 

Shih HA. Proton radiosurgery: a clinical transition from passive scattering to pencil 

beam scanning. International Journal of Radiation Oncology* Biology* Physics. 

2021 Nov 1;111(3):e544. 

17. Kim C, Kim YJ, Lee N, Ahn SH, Kim KH, Kim H, Shin D, Lim YK, Jeong JH, 

Kim DY, Shin WG. Evaluation of the dosimetric effect of scattered protons in 

clinical practice in passive scattering proton therapy. Journal of Applied Clinical 

Medical Physics. 2021 Jun;22(6):104-18. 

18. Schippers JM, Duppich J, Goitein G, Jermann M, Lomax A, Pedroni E, Reist H, 

Timmermann B, Verweij J. The use of protons in cancer therapy at PSI and related 

instrumentation. InJournal of Physics: Conference Series 2006 May 1 (Vol. 41, No. 

1, p. 61). IOP Publishing. 



 

28 
 

Chapter 1 

19. Paganetti H, Bortfeld T. Proton therapy. InNew technologies in radiation oncology 

2006 (pp. 345-363). Berlin, Heidelberg: Springer Berlin Heidelberg. 

20. Veksler VI. New method for the acceleration of relativistic particles. InDoklady 

Akademii Nauk USSR 1944 (Vol. 43, No. 8, pp. 346-348). 

21. Sato K, Yamada S, Ogawa H, Kawachi K, Araki N, Itano A, Kanazawa M, 

Kitagawa A, Kohno T, Kumada M, Murakami T. Performance of HIMAC. Nuclear 

Physics A. 1995 May 29;588(1):c229-34. 

22. Castro JR, Quivey JM. Clinical experience and expectations with helium and heavy 

ion irradiation. International Journal of Radiation Oncology* Biology* Physics. 

1977 Jan 1;3:127-31. 

23. Galonska M, Scheloske S, Cee R, Höppner K, Winkelmann T, Peters A, Haberer T. 

Commissioning of the ion beam gantry at HIT. IPAC. 2011;11:2874. 

24. Jäkel O, Kraft G, Karger CP. The history of ion beam therapy in Germany. 

Zeitschrift für medizinische Physik. 2022 Feb 1;32(1):6-22. 

25. Kumada H. Accelerator Systems for Proton Radiotherapy. Proton Beam 

Radiotherapy: Physics and Biology. 2020:85-96.. 

26. Ding X, Younkin JE, Shen J, Bues M, Liu W. A critical review of the practices of 

proton daily quality assurance programs. Therapeutic Radiology and Oncology. 

2021 Dec 30;5. 

27. Arjomandy B, Taylor P, Ainsley C, Safai S, Sahoo N, Pankuch M, Farr JB, Yong 

Park S, Klein E, Flanz J, Yorke ED. AAPM task group 224: comprehensive proton 

therapy machine quality assurance. Medical physics. 2019 Aug;46(8):e678-705. 

28. Hanley J, Dresser S, Simon W, Flynn R, Klein EE, Letourneau D, Liu C, Yin FF, 

Arjomandy B, Ma L, Aguirre F. AAPM Task Group 198 Report: An 

implementation guide for TG 142 quality assurance of medical accelerators. 

Medical physics. 2021 Oct;48(10):e830-85. 

29. Zhu XR, Poenisch F, Song X, Johnson JL, Ciangaru G, Taylor MB, Lii M, Martin 

C, Arjomandy B, Lee AK, Choi S. Patient-specific quality assurance for prostate 

cancer patients receiving spot scanning proton therapy using single-field uniform 

dose. International Journal of Radiation Oncology* Biology* Physics. 2011 Oct 

1;81(2):552-9. 

30. Aitkenhead AH, Sitch P, Richardson JC, Winterhalter C, Patel I, Mackay RI. 

Automated Monte-Carlo re-calculation of proton therapy plans using Geant4/Gate: 

implementation and comparison to plan-specific quality assurance measurements. 

The British Journal of Radiology. 2020 Oct 1;93(1114):20200228. 

31. Chen M, Yepes P, Hojo Y, Poenisch F, Li Y, Chen J, Xu C, He X, Gunn GB, Frank 

SJ, Sahoo N. Transitioning from measurement-based to combined patient-specific 

quality assurance for intensity-modulated proton therapy. The British journal of 

radiology. 2020 Mar 1;93(1107):20190669. 

32. Kumar MD, Thirumavalavan N, Krishna DV, Babaiah M. QA of intensity-

modulated beams using dynamic MLC log files. Journal of medical physics. 2006 

Jan 1;31(1):36-41. 

33. Park H, Paganetti H, Schuemann J, Jia X, Min CH. Monte Carlo methods for device 

simulations in radiation therapy. Physics in Medicine & Biology. 2021 Sep 

14;66(18):18TR01. 

34. Rahmani AM, Yousefpoor E, Yousefpoor MS, Mehmood Z, Haider A, 

Hosseinzadeh M, Ali Naqvi R. Machine learning (ML) in medicine: Review, 

applications, and challenges. Mathematics. 2021 Nov 21;9(22):2970. 



 

29 
 

Chapter 1 

35. Singh A, Thakur N, Sharma A. A review of supervised machine learning 

algorithms. In2016 3rd international conference on computing for sustainable 

global development (INDIACom) 2016 Mar 16 (pp. 1310-1315). Ieee. 

36. Usama M, Qadir J, Raza A, Arif H, Yau KL, Elkhatib Y, Hussain A, Al-Fuqaha A. 

Unsupervised machine learning for networking: Techniques, applications and 

research challenges. IEEE access. 2019 May 14;7:65579-615. 

37. François-Lavet V, Henderson P, Islam R, Bellemare MG, Pineau J. An introduction 

to deep reinforcement learning. Foundations and Trends® in Machine Learning. 

2018 Dec 19;11(3-4):219-354. 

38. Siochi RA, Pennington EC, Waldron TJ, Bayouth JE. Radiation therapy plan checks 

in a paperless clinic. Journal of Applied Clinical Medical Physics. 2009 

Dec;10(1):43-62. 

39. Rangaraj D, Zhu M, Yang D, Palaniswaamy G, Yaddanapudi S, Wooten OH, 

Brame S, Mutic S. Catching errors with patient-specific pretreatment machine log 

file analysis. Practical radiation oncology. 2013 Apr 1;3(2):80-90. 

40. Tai YM, Heng VJ, Renaud MA, Serban M, Seuntjens J. Quality assurance for mixed 

electron–photon beam radiation therapy using treatment log files and MapCHECK. 

Medical Physics. 2023 Dec;50(12):7996-8008. 

41. Olasolo-Alonso J, Vázquez-Galiñanes A, Pellejero-Pellejero S, Pérez-Azorín JF. 

Evaluation of MLC performance in VMAT and dynamic IMRT by log file analysis. 

Physica Medica. 2017 Jan 1;33:87-94. 

42. Stell AM, Li JG, Zeidan OA, Dempsey JF. An extensive log‐file analysis of step‐

and‐shoot intensity modulated radiation therapy segment delivery errors. Medical 

physics. 2004 Jun;31(6):1593-602. 

43. Chow VU, Kan MW, Chan AT. Patient‐specific quality assurance using machine 

log files analysis for stereotactic body radiation therapy (SBRT). Journal of Applied 

Clinical Medical Physics. 2020 Nov;21(11):179-87. 

44. Luo W, Li J, Price Jr RA, Chen L, Yang J, Fan J, Chen Z, McNeeley S, Xu X, Ma 

CM. Monte Carlo based IMRT dose verification using MLC log files and R/V 

outputs. Medical physics. 2006 Jul;33(7Part1):2557-64. 

45. Teke T, Bergman AM, Kwa W, Gill B, Duzenli C, Popescu IA. Monte Carlo based, 

patient‐specific RapidArc QA using Linac log files. Medical physics. 2010 

Jan;37(1):116-23. 

46. Li H, Sahoo N, Poenisch F, Suzuki K, Li Y, Li X, Zhang X, Lee AK, Gillin MT, 

Zhu XR. Use of treatment log files in spot scanning proton therapy as part of 

patient‐specific quality assurance. Medical physics. 2013 Feb;40(2):021703. 

47. Meier G, Besson R, Nanz A, Safai S, Lomax AJ. Independent dose calculations for 

commissioning, quality assurance and dose reconstruction of PBS proton therapy. 

Physics in Medicine & Biology. 2015 Mar 17;60(7):2819. 

48. Belosi MF, Van der Meer R, de Acilu Laa PG, Bolsi A, Weber DC, Lomax AJ. 

Treatment log files as a tool to identify treatment plan sensitivity to inaccuracies in 

scanned proton beam delivery. Radiotherapy and oncology. 2017 Dec 

1;125(3):514-9 

49. Rana S, Rosenfeld AB. Impact of errors in spot size and spot position in robustly 

optimized pencil beam scanning proton‐based stereotactic body radiation therapy 

(SBRT) lung plans. Journal of Applied Clinical Medical Physics. 2021 

Jul;22(7):147-54. 



 

30 
 

 

 

 

 

 

 

 

Chapter 2 

 

    Literature Survey 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

31 
 

Chapter 2 

Chapter 2- Literature Survey 

2.1 History of Proton Therapy 

The discovery of X-rays by Wilhelm Roentgen [1] and the discovery of 

radioactivity by Henri Becquerel [2], both in 1895, laid the groundwork for the application 

of radiation in cancer treatment. These ground-breaking discoveries paved the way for 

technological advancements, leading to the development of high-energy linear accelerators. 

By the mid-20th century, these accelerators were utilizing X-rays in the 4-15 MV range for 

external beam radiotherapy. In the 1990s, Dr. M. J. Zelefsky and his team at Memorial 

Sloan Kettering Cancer Center advanced the field by developing IMRT [3]. IMRT 

significantly improved the precision of radiotherapy by modulating the intensity of 

radiation beams, enabling the delivery of higher doses directly to tumour tissues while 

minimizing exposure to surrounding healthy tissues. This technique employs advanced 

computational algorithms and sophisticated beam-shaping technologies to enhance 

targeting accuracy. The subsequent introduction of Image-Guided Radiation Therapy 

(IGRT) further refined this approach by incorporating imaging techniques to improve the 

accuracy of radiation delivery, thereby reducing the risk of damage to normal tissues [4]. 

Despite these advancements, X-ray radiation inherently exhibits exponential 

attenuation, which means the beam continues to deliver a dose to tissues as it exits the body. 

While modern techniques have minimized this effect, exponential attenuation remains 

challenging in optimizing radiotherapy protocols to balance efficacy and normal tissue 

sparing. The advent of particle therapy, made possible by Ernest Lawrence's cyclotron 

development in 1929 [5], introduced a new era in radiotherapy. Particle therapy, including 

proton and heavy ion therapies, allows for the precise treatment of tumours with minimal 

radiation to surrounding healthy tissues. Unlike X-rays, particles such as protons can be 

engineered to release their maximum energy at a specific depth within the tissue, 

significantly reducing the dose delivered beyond the tumour and sparing adjacent normal 

tissues from unnecessary radiation exposure. 

The early exploration of particle therapy began with John Lawrence and Robert 

Stone, who used neutron beams produced by a cyclotron for cancer treatment. Between 

1938 and 1943, they treated around 250 patients, but significant toxicities such as bone 

necrosis and ulcers emerged, leading to the discontinuation of this approach [6,7]. The 
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concept of proton therapy for cancer treatment gained momentum after a study by Robert 

Wilson [8], highlighting the advantages of the proton beam's finite range and the Bragg 

peak phenomenon over conventional X-ray therapy. The first clinical treatment using a 

proton beam commenced at LBNL in 1954 [9], marking a significant milestone in the field. 

LBNL also pioneered research on heavy ion therapy, further expanding the scope of particle 

therapy. 

In 1955, Sweden initiated proton therapy trials on rats and goats to study its 

biological effects [10,11]. The initial patient treatments used the plateau region of the 

proton beam rather than the Bragg peak, employing a crossfire technique. Subsequent 

advancements led to the development of range shifters and modulation wheels [12]. The 

Gustav Werner Institute in Sweden was the first to use a ridge filter for range modulation, 

creating Spread-Out Bragg Peak (SOBP) for treatment [13]. In 1959, the Harvard Cyclotron 

Laboratory (HCL) developed a cyclotron capable of producing protons with a maximum 

energy of 160 MeV, sufficient to penetrate up to 16 cm in water [14]. Preclinical studies 

began with this system, and in 1961 [15], Massachusetts General Hospital (MGH) 

collaborated with HCL to start clinical proton therapy trials, initially focusing on treating 

pituitary tumours using a single scattering technique. During the 1970s, double-scattering 

proton therapy was developed at HCL, enabling the treatment of larger targets [16]. 

However, the passive scattering system had limitations, such as needing patient-specific 

customized range shifters and collimators. 

In 1961, Larsson et al. [17] explored using magnets to deflect the proton beam. Still, 

it wasn't until 1977 that Leemann and colleagues [18] developed a beam scanning technique 

for three-dimensional modulation of the pencil beam. This innovation led to various 

scanning techniques, such as spot-by-spot and continuous scanning. Throughout the 1980s, 

extensive studies on different scanning techniques were conducted at LBL, focusing on 

advancing passive scattering and pencil beam scanning to enhance the utility and efficiency 

of proton therapy. The first fully hospital-based proton therapy facility was established at 

Loma Linda University Medical Center (LLUMC) in 1990 [19], followed by installing the 

first commercial proton therapy system at MGH [20]. 

Since 2000, the global installation of commercial proton therapy systems has 

expanded significantly, with over 300,000 patients treated by 2024 [21]. The PBS system 
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has become the dominant method for proton beam delivery. It is known for its precision in 

dose distribution and ability to target tumours with minimal impact on surrounding healthy 

tissues. Recent advancements in proton therapy systems include the development of 

superconducting synchrocyclotrons and compact gantry designs, which have significantly 

reduced the size and cost of these systems [22]. Innovations like multi-room proton therapy 

centres and Flash therapy delivering ultra-high dose rates in milliseconds are being 

explored to enhance treatment efficiency and outcomes [23]. These cutting-edge 

developments aim to broaden the accessibility and clinical application of proton therapy, 

making it more affordable and available to a broader range of patients and healthcare 

facilities. 

2.2 Proton Therapy in Clinical Practice 

Proton beam therapy offers many clinical applications, particularly in treating 

paediatric tumours and radio-resistant cancers. Its effectiveness stems from unique 

advantages, such as the sharp dose fall-off after the Bragg peak, which allows for precise 

targeting of tumours while sparing surrounding healthy tissues. The biological benefits 

associated with high RBE and LET effects further enhance its therapeutic potential. 

However, initial enthusiasm for proton therapy, driven by these promising 

characteristics, has been moderated by clinical outcomes, suggesting that early expectations 

may have been overly optimistic. Challenges such as the sensitivity of proton dose 

distributions to anatomical changes, assumptions about RBE, and the ongoing evolution of 

treatment planning and delivery technologies have underscored the complexities of fully 

realizing its potential. Despite the high costs and currently limited evidence of clear clinical 

superiority, ongoing research is uncovering protons' distinct biological and clinical effects, 

highlighting the need to deepen our understanding and apply these insights to maximize 

therapeutic outcomes. 

The children are the most beneficial group of patients because of the lower normal 

tissue irradiation. A study by Jimenez RB et al. [24] concluded that proton therapy leads to 

better survival rates and improved tumour control in paediatric patients treated for 

Medulloblastoma. A similar study by Ladra MM et al. [25] evaluated the Overall Survival 

rate (OS) and Local Control rate (LC) of children with rhabdomyosarcoma. The 5-year 

results show that the OS and LC are similar and comparable to photon therapy studies, but 
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the acute and late toxicity rates are less with proton therapy. So, proton therapy may be a 

safer option for children. Cranio Spinal Irradiation (CSI) is the treatment that irradiates the 

brain and spine [26]. As the total irradiation area is high, the photon therapy leads to 

significant doses to many normal tissues such as the eye, kidneys, lungs, bowel, heart, etc. 

The proton therapy for CSI is considered the most beneficial use of protons. Many studies 

reported the benefit of proton therapy over photon therapy. Howell et al. [27] compared the 

dosimetric data of proton and photon treatment plans for 18 patients aged 2 to 18 who 

underwent CSI. The results indicated that all patients experienced better normal tissue 

sparing with proton therapy while maintaining consistent tumour dose coverage. Many 

studies compared the dosimetric benefit of proton therapy over photon for CSI cases, and 

all reported less dose to normal tissues than photon therapy [28-30].  

Another group of tumours that benefit significantly from proton therapy includes 

skull base and Sinonasal tumours, which are often located near critical structures such as 

the spinal cord, brain, brainstem, and optic pathways. These tumours typically require high 

doses of radiation for effective treatment. However, in photon therapy, the ability to 

increase the dose is constrained by the maximum allowable dose for nearby normal tissues. 

In contrast, proton therapy allows for dose escalation due to the sharp dose fall-off 

characteristic of protons, enabling higher doses to be delivered to the tumour while 

minimizing exposure to surrounding healthy tissues [31,32]. Proton therapy has 

demonstrated potential for treating brain tumours, particularly by reducing the risk of 

adverse effects such as cognitive dysfunction.  A study by Hauswald H et al. [33] on 

nineteen patients with low-grade glioma reported minimal toxicities with proton therapy. 

A key study by Shih et al. [34] presented findings from a prospective trial involving patients 

with grade II gliomas, evaluating cognitive function and quality of life after receiving 

proton therapy. The study revealed that cognitive function metrics either remained stable 

or showed improvement compared to baseline levels. 

In head and neck tumours, the dose to the midline structures and contralateral 

structures, such as parotids, oral cavity, submandibular glands, and oral cavity, etc., are 

significantly reduced using proton therapy compared to photon therapy [35]. A study by 

Manzar et al. [36] reported that patients treated with proton therapy for oesophageal cancer 

experienced less use of feeding tubes, as well as reduced cough and dysphagia, compared 

to those who underwent IMRT. A similar result was reported by Hutcheson et al. [37], such 
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as a 20 % reduction in the use of feeding tubes in patients treated with protons compared 

to photons for head and neck treatment sites. The chordomas and chondrosarcomas are 

radio-resistant tumours and require high radiation doses. In such cases, the impact of the 

proton is high in sparing normal tissues. A study by McDonald et al. [38] reported the LC 

and OS of patients treated with protons for clival chordomas. A report from the PSI reported 

the 10-year disease-free survival of patients treated for chordomas and chondrosarcoma 

[39]. 

Proton therapy is challenging for treating moving tumours such as lung, pancreatic, 

and liver tumours. The heterogeneity in the tissue, along with movement during treatment, 

can cause large deviations from the prescribed dose. So, treating moving tumours requires 

more attention, and the treatment planning system should have a method to address such 

issues. [40-41].  The normal tissue toxicity rate is less in lung tumours treated with protons, 

as seen in all other treatment sites. A report by Nguyen QN et al. [42] found that only 1.4 

% of proton therapy patients developed grade 3 pneumonitis. All previously discussed 

clinical studies have shown significant differences in early and late toxicities. Still, the OS 

and LC rates of proton therapy are almost similar or comparable to those of photon therapy. 

In conclusion, proton therapy has emerged as a highly effective treatment modality, 

offering significant benefits in reducing both early and late treatment-related toxicities 

while maintaining comparable or even superior outcomes to conventional therapies. Its 

precise targeting capabilities, particularly in challenging tumour locations near critical 

structures, make it an invaluable tool in modern oncology, providing a promising option 

for improving patient quality of life and long-term survival. 

 

2.3 The Role of Log Files in Radiotherapy Quality Assurance 

In radiotherapy, log files are digital records that capture detailed information about 

the treatment delivery process, including machine settings, dose delivery, patient 

positioning, and errors or deviations. These files are vital for QA, ensuring that radiation 

therapy is delivered precisely and safely, and identifying potential issues during treatment. 

The application of log files for troubleshooting and QA originated with linear accelerators, 

which provide essential data on the position and speed of the MLC during each beam 

segment, the MU delivered at each control point, and the gantry and collimator angles. This 

information is used to analyze beam delivery accuracy, conduct audits, and perform 
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machine- and PSQA. Log files are equally valuable in proton therapy, particularly in PBS 

systems. They record critical data such as spot position, spot size, selected range, beam 

current, scanning magnets set points, MU, and the number of spots, which can be used for 

patient-specific and machine QA. 

Modern radiotherapy systems include numerous electronic and automated 

components for data transfer and beam delivery, resulting in extensive log files that record 

many data points. Manually verifying each point—such as the positions of the MLC at each 

control point or the speed of MLC movement during delivery—can be challenging. As 

treatment complexity increases, the volume of parameters to be checked also rises, making 

manual verification time-consuming and prone to errors. Recently, computer-assisted tools 

have been introduced to automate this process, enhancing efficiency and accuracy. Using 

log files and in-house scripts, Siochi et al. [43] automated the physics checks of treatment 

plans and delivery data, significantly reducing manual errors. Another study by Rangaraj 

D et al. [44] utilised Varian radiotherapy Linac Dynalog files to analyse data from 914 

patients, assessing the integrity of plan transfer and beam delivery. They identified 14 

errors, all of which were linked to human intervention, such as data modification during 

plan transfer. The study concluded that log file-based data analysis is a robust and efficient 

method for detecting errors in the process. Stell AM et al. [45] studied log files from 91 

step-and-shoot IMRT patient plans and found that segment MU errors depended on dose 

rate. They reported a maximum segment MU error of 1.8 MU at a dose rate of 600 MU/min 

and 0.5 MU at 100 MU/min. Chow V.U. et al. [46] utilised trajectory log files to evaluate 

the delivery accuracy of Stereotactic Body Radiation Therapy (SBRT) in a study involving 

120 patients. Their analysis focused on dose indices, MLC positions, and gantry angles. 

The study reported a maximum MLC position deviation of 0.3 mm and a gantry angle 

difference of less than 0.2 degrees. Based on their findings, they recommended using log 

file-based analysis for SBRT to replace patient-specific QA.  

 The conventional technique for patient-specific QA in IMRT and VMAT plans 

involves measurement-based analysis. For instance, dose fluence is typically measured 

using ionisation array chambers and then compared with the TPS data. However, with the 

introduction of MC dose algorithms for independent dose calculation using log files, many 

centres have transitioned to MC-based patient-specific QA utilizing log files. A study by 

Luo W. et al. [47] used a MC dose calculation engine to reconstruct the dose distribution 
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for eight prostate patients treated with IMRT using log files. The results indicated a mean 

leaf position error of 0.2 mm, which led to a 1 % dose difference in the target. The accuracy 

of the MC calculation algorithm in Rapid Arc plans was evaluated by Teke T. et al. [48], 

demonstrating its high accuracy in these plans. In addition to dose calculation accuracy and 

dose delivery evaluation, log files have been used to analyse plans involving moving 

targets. By synchronizing log file data with respiratory tracking data, the MLC positions 

and MU for each breathing amplitude can be accurately determined, allowing for precise 

dose reconstruction using MC.  

Given the complexity of PBS beam delivery, which involves thousands of spots and 

multiple energy layers, routine QA cannot comprehensively analyse all the data using 

detector measurements alone. Instead, routine QA focuses on assessing the accuracy of 

selected energy spot dosimetric parameters, with more extensive verification of energy spot 

data conducted during monthly and yearly QA. However, by analyzing log file data, a 

broader range of energy spot parameters can be evaluated, facilitating machine 

performance assessment and patient-specific QA using MC dose calculations. The PSI has 

been using log files as a tool for QA since 2009 [52]. Later, the MD Anderson Cancer 

Centre also studied [53] the utility of irradiation log files from the PBS system for 

evaluating beam delivery accuracy. They examined the correlation between the log file-

recorded spot positions and each spot's MU. The positional accuracy of each spot was 

measured using film and compared with the values recorded in the log files, finding that all 

values were within 0.5 mm. Additionally, the MU accuracy was compared between the log 

file-recorded values and the planned MUs, revealing a precision of 0.1 %. After confirming 

the accuracy of the log file-recorded spot positions and MU, physicists began using log file 

data to reconstruct the dose with an independent MC dose engine. This method has emerged 

as a potential tool for patient-specific QA in PBS proton therapy by leveraging the recorded 

spot positions and MU information. In 2015 Meier G et al. [54] developed an independent 

dose calculation system for dose calculation using log file information. Belosi MF et al. 

[55] calculated the dose in the patient CT scan using information from log files to evaluate 

dose differences at the anatomical level. A similar study on line scanning proton therapy 

was conducted by Jeon C et al. [56]. Using log file data, they used the Tool for Particle 

Simulation (TOPAS) MC dose engine for dose calculation. Another study by Chung K et 

al. [57] investigated line scanning accuracy by comparing film measurements with log file 

data, finding that the results were within 1 mm. Meijers et al. [58] utilized PBS proton 
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therapy log file data and patient breathing patterns to reconstruct 4D dose distributions 

based on weekly 4D computed tomography scans. 

 In conclusion, the use of log files in proton therapy, particularly for PBS systems, 

has become a crucial tool for machine QA and patient-specific QA since its introduction in 

2009. These log files have primarily been used to verify only the spot position and MU 

accuracy, facilitating MC-based dose calculations for independent dose verification. 

However, uncertainties and potential errors in log file data, as highlighted by Toscano S et 

al. [59], emphasize the need to fully understand these limitations before relying on this data 

for QA purposes. The importance of spot size and symmetry in dose delivery accuracy is 

significant; for instance, Rana S et al. [60] demonstrated that changes in spot size by 10 %, 

15 %, and 20 % resulted in notable dose variations in the target. Consequently, accurately 

addressing spot size, symmetry, position, and MU is critical for comprehensive QA and 

PSQA. 

Existing literature has focused predominantly on spot position and MU information 

from log files. There is a lack of studies critically analyzing the accuracy of spot parameters 

recorded in log files or investigating their correlation with values measured by dedicated 

detectors. Additionally, research on solutions to mitigate uncertainties in log file data used 

for machine QA and patient-specific QA is limited. Addressing these research gaps is 

essential for enhancing the reliability and effectiveness of log file data in QA processes, 

ultimately improving the precision and safety of proton therapy. 

2.4 Machine Learning-Driven Quality Assurance in Modern Radiotherapy 

The ML can transform various processes and workflows in radiation oncology, 

enhancing patient care quality and efficiency [61]. It can automate radiotherapy contouring, 

planning, QA and data analysis workflow.  The other advantage of the ML model is that it 

can analyse complex data and accurately predict or extract meaningful patterns. The most 

developed ML model in radiotherapy is the auto-contouring system [62]. Nowadays, ML-

based auto-contouring systems are commercially available, helping to reduce time, improve 

efficiency, and minimize errors in the contouring workflow of radiotherapy. Routine QA 

of Linac and proton therapy systems generates a large amount of data often used only once. 

ML models can leverage this big data to learn from past information and apply these 

insights to enhance future QA and analysis.  
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In radiotherapy, popular ML models include linear regression, lasso, ridge 

regression [63], and ensemble methods such as Random Forest and Gradient Boosting. 

Neural network models, like Convolutional Neural Networks (CNN) and Artificial Neural 

Networks (ANN) [64], are also widely used. The selection of a specific algorithm depends 

on the characteristics of the data. In Li et al. [65] study, 5-year daily QA data from a Linac 

was used to predict beam symmetry. The researchers developed an ANN-based model with 

one hidden layer of six neurons and two input parameters. The ANN model demonstrated 

superior prediction accuracy compared to the Autoregressive Integrated Moving Average 

(ARIMA) statistical model.  A study by Valdes G et al [66] used Poisson regression and 

lasso regularisation to predict the IMRT QA passing rate using different plan matrices. This 

model helped predict the passing rate before the actual measurement-based QA. Interian Y 

et al. [67] extended the study using CNN models to predict the gamma passing rate using 

a fluence map as input to the model. A similar study by Lam D et al. [68] used 182 IMRT 

QA measurements obtained through portal dosimetry and plan metrics to predict gamma 

passing rates. The introduction of log files helped the physicists use the log file data and 

ML models to predict the MLC leaf positional and dose delivery errors. In 2016, Carlson 

JN et al. [69] were the first to use delivery log files and ML models to predict MLC 

positional errors. They developed a supervised ML model and evaluated the gamma passing 

rate using the predicted MLC leaf positions. This resulted in a higher gamma passing rate 

than the measurement-based gamma analysis. Osman A F et al. [70] introduced the 

application of a feed-forward ANN model to predict MLC positional errors. They utilised 

400 log files and 14 features from the treatment plan to predict MLC leaf positions during 

beam delivery. The ANN model demonstrated good prediction accuracy, with a maximum 

Mean Squared Error (MSE) of 0.0001 mm. Another application of ML is in auto-planning 

algorithms that utilize deep learning networks [71-72]. These methods involve training 

deep-learning models on a database of previous plans to predict dose distribution for new 

plans. The primary deep learning algorithms employed for auto-planning are U-Net [73] 

and Generative Adversarial Networks (GANs). 

The application of ML models in proton therapy started in passive scattering 

techniques for predicting output factor and MU of the beam using range, modulation and 

field size as input parameters [74]. The study used Gaussian process regression (GPR) and 

shallow neural network(SNN) deep learning models. Li et al. [75] employed both feed-

forward and recurrent neural network models to predict the range and dose in proton 
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therapy by utilizing data from proton-induced positron emitters. There are only a few 

studies that have applied ML models to the passive scattering technique. However, with 

the advent of PBS techniques and the availability of irradiation log files, few studies have 

utilized ML models to predict spot dosimetric parameters based on these log files. Dominic 

Maes et al. [76] demonstrated the application of ML techniques to accurately predict 

delivered PBS spot positions and MU by integrating irradiation log file data into the 

training dataset. The study utilised TPS and log file data for model development but did 

not compare the measurement data with the log file data.  Kouwenberg J et al. [77] 

employed an ML model, specifically a Gaussian naive Bayes classifier, to classify which 

patients require Intensity Modulated Proton Therapy(IMPT). 

Using ML models with log file data in PBS proton therapy systems is a promising 

technique for automating the process, including machine QA and PSQA. This approach 

leverages the enormous data captured in log files to enhance the accuracy and efficiency of 

QA procedures, potentially leading to more reliable treatment outcomes and streamlined 

workflows. In proton therapy, the application of ML using log file data is very limited. ML 

models can be used to predict dosimetric parameters with high accuracy and to mitigate the 

uncertainties associated with log file data. 
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Chapter 3 

Title: Measurement and Evaluation of Spot Dosimetric Parameters Using a 

Scintillator Detector and Comparison with Irradiation Log File Data. 

3.1 Introduction 

The accuracy of PBS proton therapy is contingent upon the precise delivery of each 

spot by the energy, MU, position, and size specified by the TPS. Any deviation in these 

parameters during beam delivery can result in discrepancies between the dose calculated 

by the TPS and the actual dose delivered to the patient [1]. To ensure this accuracy, regular 

dosimetric assessments are performed to measure critical spot parameters, including spot 

size, position, symmetry, energy, and absolute dose. The AAPM TG224 [2] provides 

detailed guidelines for daily, weekly, monthly, and annual QA protocols in PBS proton 

therapy. A deviation in spot size greater than 10 % from the baseline value can lead to 

significant discrepancies in the dose delivered to the tumour region [3], while a spot 

position deviation exceeding 1 mm can also compromise dose accuracy [4]. Consequently, 

routine monitoring and analysis of spot parameters are critical for ensuring accurate dose 

delivery in PBS proton therapy. Given that spot size varies with energy, it is essential to 

measure these parameters across a range of energies and gantry angles to account for 

potential variations.  

Conventional spot measurements are generally conducted using specialized 

scintillation detectors or film-based systems. In contrast, the proton therapy machine 

monitors the accuracy of spot delivery specifically position, size, and MU using ionisation 

chambers positioned within the treatment nozzle. These chambers continuously record and 

verify spot parameters during beam delivery, triggering an interruption of the beam if any 

parameter exceeds the manufacturer’s specified tolerance limits. The recorded data is then 

stored in irradiation log files for further analysis. 

Log files are digital records that capture various machine parameters during beam 

delivery, including machine settings, gantry position, table values, and any errors that 

occur. In PBS proton therapy, irradiation log files contain detailed dosimetric information 

for each spot. However, routine QA procedures typically focus on a limited number of spots 

at specific energy levels and gantry angles, which may not fully represent the accuracy of 

all spots delivered during patient treatments. Since treatments can involve thousands of 

spots across a wide range of energies, analyzing log file data allows for a more 
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comprehensive evaluation of spot accuracy [5,6]. A study by Siochi et al. [7] demonstrated 

that log file data can serve as a valuable tool for machine QA, especially when data 

extraction and analysis are automated using in-house scripts. However, research by 

Toscano et al. [8] indicated that PBS log files may be subject to uncertainties and potential 

errors. Consequently, it is essential to understand these uncertainties before applying log 

file data directly in clinical practice. To ensure accuracy, log file data must be validated 

against measurements from dedicated dosimetric tools, such as scintillation detectors, 

which remain the standard for measuring spot parameters. 

This chapter highlights the importance of analysing log file data and examines the 

discrepancies between spot parameters recorded in log files and those measured by 

dedicated dosimeters. It describes the process of measuring spot parameters with a 

scintillation detector, extracting corresponding log file data, and performing a comparative 

analysis to assess the accuracy and clinical relevance of log file data for both machine and 

patient-specific QA. 

3.2 Materials and Method 

3.2.1 Five-spot Pattern 

Spot measurements were performed on an IBA Proteus Plus PBS proton therapy 

system (Louvain-la-Neuve, Belgium) with three rotating gantries installed at the National 

Hadron Therapy Centre, ACTREC, Tata Memorial Centre, Mumbai. The Study was 

conducted after the ethical committee clearance from D. Y. Patil Education Society 

(Deemed to be University), Kolhapur (DYPMCK/11/2022/IEC) and approval from 

ACTREC for data collection. The system is capable of delivering a proton beam with 

energies from 226.2 MeV to 70.18 MeV, corresponding to water-equivalent ranges of 32.02 

g/cm² and 4.1 g/cm², respectively. The spot size, defined as one standard deviation or sigma 

(σ) of the Gaussian distribution of the spot profile, varies with energy; the manufacturer 

specifies a spot size of 2.8 mm for 226.2 MeV and 6.5 mm for 70.18 MeV, measured in air 

at the isocentre plane.  

This chapter evaluates the accuracy of spot dosimetric parameters of different 

energies including analysis of spot size and position along the X and Y-axis and the spot 

symmetry. Measurements were performed across all energies with a water-equivalent range 

interval of 1 g/cm², spanning the lowest range of 4.1 g/cm² to the highest range of 32.0 
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g/cm², and for 12 gantry angles at 30° intervals. A 5-spot pattern was created for 

measurement, placing one spot at the centre and one in each quadrant of the Cartesian 

coordinate system, with coordinates at (0, 0), (127.8 mm, 127.8 mm), (-124.8 mm, 130.9 

mm), (127.7 mm, -124.8 mm), and (-127.8 mm, -127.8 mm), as shown in Figure 3.1. Six 

month measurements resulted in 1800 5-spot patterns, encompassing a total of 9000 

individual spots. All the measurements are done using a dedicated scintillator detector 

called Lynx2D. The baseline spot size values specified by IBA for all energies are presented 

in Table 3.1. These baseline spot size values are the same for a particular energy or range 

across all gantry angles and are identical in the X and Y directions. The measured spot size 

values were compared against these baseline values to evaluate accuracy.  The MU per spot 

of each energy is selected in such a way that the Lynx2D detector should measure 70 % -

90 % signal. So that the scintillator will not reach the saturation level during measurement. 

The values of MU per spot for each energy are also tabulated in Table 3.1. In addition to 

spot size, the position of each spot was measured and tabulated to evaluate the accuracy of 

spot position.  

Measurement setup errors heavily influence the accuracy of measured spot position 

values. Each spot’s relative positional error values were calculated to overcome these 

dependencies. This approach aimed to minimise the impact of setup errors on spot position 

values by assessing the deviation of each spot’s position from the intended irradiation 

position. The relative positional error values were calculated for each spot by subtracting 

the measured spot position from the measured central spot position and further subtracting 

this result from the actual set value of each spot. 

 

 

 

 

 

 

Figure 3.1: The Schematic diagram of the 5-spot pattern. Representing spot in each 

Cartesian coordinate. 
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Table 3.1: Tabulated the baseline spot size values used for this study. Tabulated the baseline 

spot size value of each range and the MU per spot of each spot.  

Range (g/cm²) Energy (MeV) Baseline spot size (mm) MU per spot used for 

the measurement 

(MU) 

4.10 70.18 6.5 1.3 

4.50 73.92 6.32 1.3 

5.50 82.69 5.9 1.3 

6.50 90.80 5.5 1.3 

7.50 98.40 5.28 0.75 

8.50 105.58 4.89 0.75 

9.50 112.42 4.69 0.75 

10.50 118.97 4.52 0.75 

11.50 125.26 4.36 0.75 

12.50 131.34 4.21 0.75 

13.50 137.23 4.08 0.6 

14.50 142.94 3.96 0.6 

15.50 148.50 3.84 0.6 

16.50 153.91 3.74 0.5 

17.50 159.20 3.64 0.5 

18.50 164.37 3.55 0.4 

19.50 169.44 3.47 0.4 

20.50 174.40 3.39 0.4 

21.50 179.27 3.32 0.4 

22.50 184.05 3.26 0.4 

23.50 188.76 3.2 0.4 

24.50 193.39 3.14 0.35 

25.50 197.94 3.09 0.35 

26.50 202.43 3.04 0.35 

27.50 206.86 2.99 0.35 

28.50 211.23 2.95 0.35 

29.50 215.54 2.9 0.35 

30.50 219.79 2.86 0.35 

31.50 224.00 2.82 0.3 

32.00 226.08 2.8 0.3 

 

3.2.2 Lynx 2D detector 

The Lynx 2D detector, optimized for PBS spot measurements in proton therapy, 

uses a gadolinium-based scintillator to convert radiation into visible light. This scintillator, 

known for its high sensitivity and efficiency, enables the detection of fine details within 
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each proton spot. Combined with a high-resolution Charge Coupled Device (CCD) camera, 

the system captures precise two-dimensional dose distributions with a 0.5 mm pixel 

resolution over a 30 cm x 30 cm active area. This design allows the Lynx 2D to measure 

critical PBS parameters such as spot size, position, and intensity across high-energy proton 

beams, including up to 250 MeV [9]. Integrated software processes the data in real-time, 

supporting adaptive and automated QA workflows to maintain the accuracy and stability 

of proton beam delivery. Figure 3.2 shows the Lynx2D detector and schematic diagram of 

the CCD camera and scintillator assembly.  

Figure 3.2: Lynx 2D Detector and graphical representation of the spot measurement 

process. [5]. 

3.2.3 Spot Measurement 

The Lynx 2D scintillator detector was securely mounted onto a dedicated holder 

designed to attach to the machine gantry head, referred to as the nozzle. This holder ensures 

proper alignment of the Lynx 2D detector with the gantry head, facilitating the 

measurement of spot parameters at various gantry angles. Accurate detector alignment is 

crucial for reliable measurements; therefore, the alignment was verified and corrected 

before data acquisition. To verify alignment, a plumb attached to a string was used to detect 

and correct any tilt in the detector. The string, when properly aligned with the plumb, hangs 

perpendicularly. Kilo-voltage (kV) imaging of the string was employed to quantify and 

rectify any tilt. Adjustments were made until the tilt was reduced to less than 0.3 mm per 

metre. Figure 3.3 illustrates the gantry-mounted Lynx 2D detector with the plumb attached. 
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Figure 3.3: The Lynx2D attached to the gantry head using the Lynx holder. The levelling 

plumb is attached to level the detector.  

Once the alignment was confirmed, the 5-spot pattern (Figure 3.1) was irradiated 

for each energy and the spot parameters were analysed using MyQA Fast Track software 

(IBA Dosimetry GmbH, Germany). The PBS spots exhibited an elliptical shape (Figure 

3.4), necessitating the measurement and analysis of spot size along both major and minor 

axes, in addition to the X and Y directions. Spot size accuracy was assessed by evaluating 

spot dimensions in these directions. Spot symmetry was also calculated along the X-Y axes 

as well as the major-minor axes using Equations 3.1 and 3.2. Furthermore, the relative 

positional errors were compared against the reference value. All values are compared 

against the tolerance values.  

𝑆𝑝𝑜𝑡 2𝐷 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦(%) =
(𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒−𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠 𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒)

(𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒+𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠 𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒)
 𝑋100                         (3.1) 

         𝑋𝑌 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 (%) =
(𝑋−𝑎𝑥𝑖𝑠 𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒−𝑌−𝑎𝑥𝑖𝑠 𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒)

(𝑋−𝑎𝑥𝑖𝑠 𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒+𝑌−𝑎𝑥𝑖𝑠 𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒)
𝑋100                                      (3.2) 
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Figure 3.4: PBS spot shows an elliptical shape. (a) represents the elliptical shape of the 

spot, (b) Line plot of the Gaussian distribution of the spot.   

3.2.4 Nozzle and Beam Monitoring 

The irradiation log file in the PBS proton therapy system comprehensively records 

all parameters associated with beam delivery, including spot parameters, machine settings, 

and beam tuning details. The IBA Proteus Plus PBS system employs a specialised nozzle 

head for precise beam control and monitoring. The schematic representation (Figure 3.5) 

of the IBA Proteus Plus PBS nozzle head illustrates the beam path and associated 

components. Initially, the proton beam passes through IC1, which comprises 12 copper 

strips aligned along the X and Y directions, with a spacing of 3.5 mm between adjacent 

strips. IC1 primarily verifies the positional accuracy of each spot. The beam then passes 

through a quadrupole magnet, which maintains alignment along the central axis, ensuring 

stability before reaching the scanning magnets. 
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Figure 3.5: The IBA Proteus plus dedicated PBS nozzle schematic representation.  

*IC2-3- Ionisation chamber.  

The nozzle has two scanning magnets called X and Y scanning magnets, which 

deflect the pencil beam along the X and Y axes. The deflection currents of these magnets 

vary based on the desired spot positions and the beam energy. After deflection, the beam 

exits the nozzle and encounters another ionisation chamber called IC23 (Figure 3.6 (a) and 

3.6 (b)). This chamber comprises two ionisation layers, with a total of 64 copper strips 

spaced 5 mm apart. The IC23 system records the position and size of each spot by 

measuring the charge collected across its strips. Additionally, IC23 is equipped with a dose 

pad, which accumulates charge during spot delivery. The MU for each spot is directly 

proportional to the charge collected in IC23, where a charge of three Nano coulombs 

corresponds to 1 MU in standard pressure and temperature. The IC23 is a vented chamber.  

The log file generated by the system encapsulates critical beam irradiation data, including 

spot positions and sizes measured by IC1 and IC23, scanning magnet currents and voltages, 

beam current, spot-specific charge collected by IC23, gantry angles, and set ranges. 
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Figure 3.6: (a) IC23 assembly in the nozzle. (b) IC23 chamber schematic representation. 

3.2.5 Log file generation 

The beam log file plays a critical role in proton therapy delivery, ensuring accurate 

monitoring and control of beam parameters. A typical treatment plan consists of multiple 

energy layers, each containing numerous spots. The TPS defines the spot positions at the 

isocentre and assigns MU to each spot. These parameters, including the energy of each 

layer, spot positions, and MU per spot, are organised into a tabulated format and exported 

to the Oncology Information System (OIS), Mosaiq (Elekta Pvt Ltd), as control points. 

For each energy layer, the log file generates three primary Comma-Separated Value 

(CSV) files: a specification file containing planned parameters, a tuning pulse data file, and 

an irradiation data file. Additionally, a file detailing the beam configuration is created. The 

input to the specification file is the data from the Mosaiq, using this data, the IBA beam 

delivery system generates the beam specification file. The system calculates the range for 

each energy layer based on Equation 3.3 and translates the TPS-defined spot positions at 

the isocentre into corresponding positions at the IC23 level for verification during delivery. 

The specification file records these IC23-level spot positions, along with other critical 

parameters such as the unique identification number for each spot, the intended charge for 

the specified MU, energy-specific scanning magnet currents and voltages, range of each 

spot and beam currents for each spot. 

𝑅𝑎𝑛𝑔𝑒 (
𝑔

𝑐𝑚2
) = exp [ (𝑎 ∗ ln(𝐸𝑛𝑒𝑟𝑔𝑦)3 + 𝑏 ∗ ln(𝐸𝑛𝑒𝑟𝑔𝑦)2 + 𝑐 ∗ ln(𝐸𝑛𝑒𝑟𝑔𝑦) 𝑑]   (3.3) 
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Energy in MeV. The coefficients a=-0.0133, b=0.15248, c=1.2193, and d=-5.5064 

The specification file serves as the reference for real-time monitoring, while the log 

file provides a detailed record of beam irradiation data during delivery. Any deviation from 

the predefined tolerances specified in the beam specification file triggers an immediate 

beam interruption, ensuring precise and safe proton therapy. The tolerance for spot size, 

position and MU are given in Table 3.2. In Table 3.2, the comparison of AAPM TG224 

recommended tolerance values with the log file tolerance provided.  

Table 3.2: Comparison of AAPM-TG224 Recommended Tolerances for Spot Parameters 

and IBA-Proteus Plus Log File Tolerances for Triggering Beam Interruption 

 Spot Size Spot Position Monitor Unit 

(MU) 

Spot symmetry 

X-Axis Y-Axis 

AAPM-

TG224 

recommended 

Tolerances. 

10 % of 

baseline 

spot size 

1 mm 1 mm 2 % 10 % 

Log file 

tolerances. 

1 mm 2.03 mm* 2.25 mm* 2.5 % Not specified 

in the log file. 

* The values are given for the IC23 level.  

3.2.6 Tuning Pulse  

The IC23 continuously monitors the spot position and MU for each spot during 

proton beam delivery. To ensure positional accuracy within each energy layer, the system 

employs a mechanism known as the tuning pulse. In this process, a spot near the beam's 

central axis is selected, and a minimal dose of 0.02 MU is delivered to that spot. The IC23 

records the spot’s position and compares it with the intended position, calculating the 

deviation or error in the spot position within the layer. This positional error is corrected by 

assigning an offset value to the scanning magnets for the specific energy layer. 

Consequently, the corrected offset ensures accurate positioning of all subsequent spots in 

that layer. This tuning pulse process is performed for every layer of beam delivery to 

maintain precision across all spots. The log file captures the offset values recorded during 

each tuning pulse, and during log file analysis, these offset values are extracted to determine 

the actual delivered positions of the spots accurately. 
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3.2.7 Data extraction from log file 

Log file data extraction is conducted using an in-house Python script designed for 

the systematic processing of beam irradiation data. The script reads and processes all the 

log files including beam configuration files, specification files, tuning pulse files and 

irradiation files to facilitate comprehensive analysis and quality assurance. 

The script begins by reading the beam.csv file, which records general beam 

irradiation data, including the gantry name, temperature, and pressure during delivery. 

Using this information, the script calculates the temperature and pressure correction factor 

(K) to adjust the temperature and pressure change inside the IC23 chamber for each spot. 

The correction factor is calculated using Equation 3.4. One MU corresponds to 3nC of 

charge under standard temperature and pressure (STP) conditions. The IC23 measured 

charge is multiplied by the factor K and calculates the MU of each spot.  

                                𝐾 =
(𝑇+273.2)

(𝑇𝑜+273.2)
∗

𝑃0

𝑃
                                                           (3.4) 

K is the temperature and pressure correction factor. T is the temperature of the IC23 in 

degree (standard temperature 220c) and P is the pressure of the air in the IC23 in mbar. The 

Po is the standard pressure of 1013.2 mbar.  

Next, the script processes the irradiation.csv file, which contains detailed 

information for all delivered spots, including spot positions at IC23 and IC1, spot sizes at 

IC1 and IC23, charge collected at IC23, scanning magnet currents and voltages, beam 

current, set range, degrader feedback, and tuning pulse offset values. The tuning pulse 

offset is subtracted from all spots to determine the actual delivered positions at IC23. 

Additionally, the script identifies the tuning pulse spot number and adds its charge to the 

corresponding spot. 

The script also reads the specification file for each layer, which contains the planned 

parameters such as the number of spots, intended positions, sizes, energy of each spot and 

charges. It tabulates these values and also calculates the minimum and maximum allowable 

values based on predefined tolerances specified in Table 3.2.  
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Finally, the script consolidates data from all sources to create a detailed tabulation 

of spot information for each energy layer. Additionally, measured data from the Lynx 2D 

scintillation detector, including spot sizes along the X and Y axes, major and minor axis 

spot sizes, and spot symmetry, is tabulated and compared with the corresponding values 

recorded in the log file. 

3.3 Results 

3.3.1 Five-Spot measurement 

The smallest spot size measured in the scintillator was 2.69 mm in the x direction 

and 2.66 mm in the y direction for the energy 226.2 MeV, while the largest spot size 

measured 6.59 mm in the x direction and 6.71 mm in the y direction for the 70.18 MeV. 

Similarly, the minimum major axis spot size was 2.765 mm for 226.2 MeV, whereas the 

maximum major axis spot size was 6.663 mm for 70.18 MeV. The minimum for the minor 

axis spot size was 2.548 mm for 226.2 MeV, and the maximum was 6.48 mm for 70.18 

MeV. The maximum relative positional error along the X-axis was -0.85 mm and 0.86 mm 

for relative positional error on the Y-axis. The statistics of measured data are given in Table 

3.3. The maximum 2D symmetry was 9.5% and XY symmetry was 3.9%.  
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Table 3.3: The statistics of all Lynx2D scintillator measured spot parameters. 

 

The measured spot sizes across all ranges and gantry angles were compared with 

the baseline spot size values, and the results are summarised in Table 3.4. The comparison 

demonstrated excellent agreement between the measured and baseline values. For the X-

axis spot size, the maximum variation was observed to be 6.5% at a range of 25.5 g/cm² for 

a gantry angle of 270°. Similarly, the maximum difference in the Y-axis spot size was 7.31 

% at a range of 30.5 g/cm² for a gantry angle of 30°. 

The Standard Deviation (SD) of the differences in the X-axis spot size was less than 

2.6 %, while for the Y-axis spot size, it was under 3 %. The maximum Root Mean Square 

Error (RMSE) for the X-axis spot size difference was 2.5 %, and for the Y-axis spot size 

difference, it was 2.9 %. Importantly, all the observed variations were well within the 

  

Mini

mum 

 

Maxi

mum 

 

Mean 

Stand

ard 

Devia

tion 

25th 

Percent

ile (1st 

Quartil

e) 

50th 

Percentil

e 

(Median) 

75th 
Percenti

le(3rd 
Quartile

) 

Range (gm/cm^2) 4.1 32.0 18.0 8.6 10.5 18.0 25.5 

Gantry angle 

(Degree) 

0.0 330.0 165.0 103.6 82.5 165.0 247.5 

Measured X 

position(mm) 

-127.3 129.6 1.1 112.2 -123.4 -0.7 126.5 

Measured Y 

position(mm) 

-132.4 128.3 -1.7 114.3 -128.0 -0.7 124.2 

Measured X spot 

size(mm) 

2.7 6.6 3.9 1.0 3.1 3.5 4.5 

Measured Y spot 

size(mm) 

2.7 6.7 3.9 1.0 3.1 3.5 4.5 

Measured Major axis 

spot size (mm) 

2.8 7.0 4.0 1.1 3.2 3.6 4.7 

Measured Minor 

axis spot size (mm) 

2.5 6.5 3.8 1.0 3.0 3.4 4.4 

2D symmetry (%) 2.0% 9.5% 3.5% 2.0% 1.8% 3.2% 4.8% 

XY Symmetry(%) 1.0% 3.9% 0.9% 0.7% 0.3% 0.8% 1.3% 

Relative positional 

error along X-

axis(mm) 

-0.85 0.71 0.05 0.36 0.00 0.10 0.30 

Relative positional 

error along y-axis 

(mm) 

-0.41 0.86 0.22 0.31 0.00 0.04 0.52 
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AAPM TG-224 specified tolerance of 10 % highlighting the consistency and accuracy of 

the spot size measurements. 

Table 3.4: Comparison of Lynx2D-measured X and Y spot sizes with the manufacturer-

specified baseline values, including the differences in X and Y spot sizes, along with the 

mean, standard deviation, and root mean square error (RMSE). 

Gantry 

Angle 

(Degre

es) 

Maximum 

difference 

in X spot 

size (%) 

Mean (SD) 

X-spot size 

difference 

(%) 

RMSE of 

X-spot 

size 

differenc

e (%) 

Maximum 

difference 

in Y spot 

size (%) 

Mean (SD) 

Y-spot size 

difference 

(%) 

RMSE 

of Y 

spot 

size 

differen

ce (%) 

0 
6.1 0.00 (2.42) 2.42 5.76 -0.56 (2.27) 2.26 

30 
5.29 0.27 (1.87) 1.86 7.31 -0.06 (1.57) 1.57 

60 
3.03 -0.54 (1.78) 1.78 7.30 -0.41 (2.32) 2.31 

90 
0.29 -2.50 (1.31) 1.31 4.27 -0.73 (1.74) 1.74 

120 
0.13 -2.83 (1.34) 1.33 1.91 -2.29 (2.04) 2.03 

150 
2.17 -1.32 (1.42) 1.42 2.72 -1.49 (1.69) 1.69 

180 
5.60 0.61 (2.10) 2.10 6.69 2.67 (2.93) 2.92 

210 
6.04 0.75 (2.56) 2.55 4.89 -0.47 (2.08) 2.07 

240 
1.74 -0.73 (1.33) 1.33 5.56 -1.11 (2.18) 2.17 

270 
6.50 -0.52 (1.82) 1.82 3.78 0.14 (1.64) 1.63 

300 
0.14 -2.65 (1.34) 1.34 0.82 -2.05 (1.38) 1.37 

330 
3.41 -0.74 (2.20) 2.19 2.04 -0.99 (1.30) 1.30 

Figure 3.7 illustrates the relationship between the measured X and Y spot sizes and the 

range. The plot reveals a clear trend where the spot size decreases as the range increases, 

indicating a dependence of spot size on the beam energy, with higher energy beams 

producing smaller spots. This behaviour aligns with expectations, as higher energy beams 

exhibit less scattering resulting in reduced spot size in air.  
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Figure 3.7: The measures of spot size (X and Y direction) plotted against the range. 

  

Figure 3.8: The measured spot size along X and Y direction versus range plotted for 

different gantry angles. (a) X spot size versus range for different gantry angles. (b) Y spot 

size versus range for different gantry angles. 
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Figure 3.8 presents the measured spot sizes for different gantry angles plotted 

against the range. The data show slight variations in the measured spot sizes for different 

gantry angles, highlighting the influence of the beam's orientation on spot size 

characteristics. The variations are more pronounced for spots at higher ranges, where the 

differences between gantry angles become more evident. 

3.3.2 Log file data analysis 

The study collected all irradiation log files of the corresponding 5-spot pattern 

measured using the Lynx2D detector. The log file data analysis was done using an in-house 

tool developed using Python script.  The log file recorded spot size, and relative positional 

error values were compared against the lynx2D measured data to evaluate the correlation 

between the data.  

The log file also captures the scanning magnet currents corresponding to each spot. 

Scanning magnet currents are inherently a function of the beam's range or energy, as they 

control the deflection and positioning of the proton beam for accurate spot delivery. Figures 

3.9 and 3.10 depict the variations in X and Y scanning magnet currents as a function of the 

range. These plots highlight the dependency of the scanning magnet currents on the energy 

levels, with distinct trends observed across the range spectrum. Such data are invaluable 

for verifying the consistency and accuracy of the scanning magnet performance, ensuring 

the correct positioning of spots during treatment delivery. 

 

Figure: 3.9: Range versus X scanning magnet current recorded in the log file data. 
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Figure 3.10: Range versus X scanning magnet current recorded in the log file data.  

The log file records spot size data measured by the IC23 ionisation chamber, which 

is equipped with copper strips spaced 5 mm apart. The spot size is determined by fitting a 

Gaussian function to the charge collected across these strips. However, due to the limited 

resolution of the IC23, the recorded spot size values are less precise when compared to 

those obtained using a high-resolution scintillator detector, such as the Lynx2D. 

Figures 3.11 and 3.12 display the relationship between the range and the spot sizes 

recorded along the X and Y axes in the IC23, respectively. These graphs include error bars 

to illustrate the variation in recorded spot sizes for each energy or range. The log file 

recorded spot size shows a longer error bar with respect to range.  

 

 

 

 

 

 

Figure 3.11: Range versus log file recorded X spot size with error bar. 
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Figure 3.12: Range versus log file recorded X spot size with error bar. 

Table 3.5: The difference in spot size along X and Y directions between the Lynx2D 

measured and log file recorded data. The maximum difference, RMSE, mean and standard 

deviation of the difference are given for different gantry angles. 

 

Gantry 

Angle 

(Degre

es) 

Maximum 

difference 

in X spot 

size (%) 

Mean(SD) 

X-spot 

size 

difference 

(%) 

RMSE of 

X-spot 

size 

difference  

(%) 

Maximum 

difference 

in Y spot 

size (%) 

Mean(SD) 

Y-spot 

size 

difference 

(%) 

RMSE of 

Y-spot 

size 

difference  

(%) 

0 21.88 6.91(4.95) 8.50 16.04 4.05(4.19) 5.82 

30 14.90 6.75(3.67) 7.68 17.42 4.87(4.47) 6.61 

60 16.58 6.78(3.55) 7.65 18.51 5.20(4.68) 7.00 

90 23.88 6.41(4.86) 8.04 18.93 5.85(4.11) 7.15 

120 13.72 6.68(3.31) 7.45 17.69 5.99(3.81) 7.10 

150 15.27 7.14(3.51) 7.96 16.27 5.08(3.79) 6.33 

180 26.32 7.64(5.62) 9.48 16.44 4.51(3.95) 5.99 

210 14.51 6.66(3.83) 7.68 19.38 6.70(4.75) 8.21 

240 14.16 6.83(3.85) 7.84 21.04 6.35(5.15) 8.17 

270 18.82 6.88(4.85) 8.42 19.43 5.76(4.35) 7.22 

300 15.41 7.19(3.58) 8.03 19.32 5.67(4.35) 7.15 

330 14.48 7.29(3.72) 8.19 16.31 4.54(3.76) 5.89 
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Figure 3.13: Plots of measured spot parameters versus log file recorded spot parameters. 

(a) Measured X-spot size versus log file recorded X-spot size. (b) Measured Y spot size 

versus log file recorded Y spot size. (c) Measured relative X positional error versus log file 

recorded relative X-positional error. (d) Measured relative Y positional error versus log file 

recorded relative Y positional error. 

The comparison of Lynx2D-measured spot parameters with the spot size values 

recorded in the log file is summarised in Table 3.5. Additionally, the relationships between 

Lynx2D-measured and log file-recorded spot sizes in the X and Y directions, as well as the 

correlation between their relative positional errors, are illustrated in Figure 3.13. 

From Table 3.5, the maximum observed difference in X-spot size was 23.9 %, 

corresponding to a range of 19.5 g/cm² and a gantry angle of 900. For the Y-spot size, the 

maximum difference was 21.04 %, observed at a range of 4.1 g/cm² and a gantry angle of 

2400. The highest mean X-spot size difference was 7.64 %, with a SD of 5.62 %, while the 

highest mean Y-spot size difference was 6.7 %, with an SD of 4.75 %. The maximum 

RMSE was 9.5 % for the X-spot size and 8.21 % for the Y-spot size. These values indicate 

that the spot size differences recorded in the log file exceed the AAPM TG224 

recommended tolerance of 10 %. Furthermore, the maximum differences between the log 

file-recorded relative positional errors and the Lynx2D-measured relative positional errors 

were found to be 0.910 mm and 1.610 mm for the X and Y directions, respectively. These 

deviations surpass the TG224-recommended tolerance of 1 mm for relative positional error. 
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The findings suggest that the log file-recorded spot sizes and positional data exhibit 

variations and uncertainties that exceed the established tolerance limits when compared to 

scintillator-measured values. Consequently, the direct use of log file data for evaluating 

spot size and position in quality assurance processes may introduce significant errors, 

highlighting the necessity for independent verification using reliable measurement tools 

such as the Lynx2D detector. 

3.4 Discussion 

Spot dosimetric accuracy is a critical determinant of precise dose delivery in proton 

therapy, directly influencing patient treatment outcomes. This chapter comprehensively 

describes the methodologies employed for spot parameter measurement and evaluates the 

accuracy of key dosimetric parameters. It also details the analysis of irradiation log file data 

compared with detector-measured values. The study systematically investigates the 

accuracy of spot size, position, and symmetry for individual spots in the proton PBS system, 

highlighting their significance in ensuring optimal treatment precision.  

A study conducted by Kraan AC et al. [10] investigated the impact of spot size 

variations on dose delivery by altering the nominal spot size by 5 % to 50 % and calculating 

the dose in seven patient datasets. The findings demonstrated that variations in spot size 

significantly influence treatment plan quality. Similarly, Liu C et al. [11] evaluated the 

relationship between spot size and spot spacing in treatment plan quality. Their study 

concluded that beams with smaller spot sizes are more robust in managing interplay effects 

and anatomical variations compared to larger spot sizes. Rana S et al. [3] focused on the 

effect of spot size variations in Stereotactic Body Radiation Therapy (SBRT) lung cases, 

revealing that a 20 % variation in spot size led to a 3 % change in target dose coverage, 

while a 15 % variation resulted in less than a 2 % dose difference. These results align with 

the AAPM TG224-recommended spot size tolerance of 10 %. 

In this study, the Lynx2D measured spot size across all energy ranges and gantry 

angles demonstrated high accuracy, with maximum deviations of less than 8 % compared 

to baseline values well within the 10 % tolerance specified by AAPM TG224. This 

underscores the importance of routine verification of spot size in PBS systems. Ensuring 

spot size accuracy is essential for maintaining treatment plan quality and delivering precise 
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doses to patients, reinforcing the need for regular quality assurance checks as part of 

standard PBS practice. 

Numerous studies have utilised irradiation log files for PSQA. Winterhalter C et al. 

[12] demonstrated the potential of log file data combined with MC dose calculation 

algorithms, reporting that over 90 % of voxels exhibited dose errors of less than 3 % when 

comparing planned and recalculated doses. This finding suggests that log file and MC-

based methods could serve as viable alternatives to conventional measurement-based 

PSQA. Similarly, Jeon C et al. [13] employed the TOPAS-MC dose engine to recalculate 

doses for a line-scanning PBS system using spot position and MU information from log 

files. Their results showed a gamma analysis passing rate exceeding 90 % for 2 mm/2 % 

criteria, although their study did not account for potential variations in machine output. 

Ates O et al. [6] conducted a comprehensive analysis of six years of log file data from a 

PBS proton therapy machine, focusing on the accuracy of spot MU, position, and size 

compared to TPS-specified values. Their findings revealed that MU accuracy and spot 

position errors were both within acceptable limits, with deviations of less than 1 %. 

However, significant discrepancies in spot size were observed, with many exceeding the 

10 % tolerance specified by AAPM TG224. 

In this study, the variation between measured spot sizes and log file-recorded values 

frequently exceeded the AAPM TG224 recommended tolerance of 10 % across most ranges 

and gantry angles. The mean error was greater than 7 %, with an SD exceeding 5 % for 

numerous ranges and angles. While earlier studies have primarily focused on log file 

derived MU and spot position data for MC-based dose recalculations in PSQA, this 

approach often overlooks the critical contributions of spot size and symmetry. These 

parameters are essential for ensuring accurate dose comparisons between the TPS and 

delivered doses. 

The findings of Toscano S et al. [8] underscore the inherent uncertainties in log file 

data, particularly for spot position and spot size, emphasising the limitations of directly 

utilising log file data for PSQA or machine QA without thorough evaluation. In this study, 

the substantial SD and variations in spot size exceeding 10 % between Lynx2D-measured 

and log file-recorded data further highlight the degree of error and uncertainty in log file-

reported spot size values. A comprehensive assessment of log file inaccuracies is 
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imperative to account for these discrepancies and to ensure robust quality assurance in 

proton therapy. Rigorous validation of log file data, particularly spot size and symmetry, is 

essential to enhance the reliability of PSQA and machine QA processes. 

Measurement-based PSQA has traditionally been the gold standard for verifying 

treatment accuracy. However, this approach is time-consuming, requiring significant 

machine time and manpower. Automation in QA processes for PBS is increasingly critical 

to ensure fast and reliable evaluations of beam delivery accuracy. Current PSQA methods 

using MC dose recalculations with log file data primarily focus on spot position and MU 

values, often neglecting variations in parameters such as spot size and symmetry. These 

parameters are crucial for accurate dose evaluation, as their variations can significantly 

affect treatment quality. 

In this study, log file-recorded data were compared with measurements obtained 

using the Lynx2D scintillation detector to evaluate their correlation. While the spot size 

data from the log files showed some correlation with measured values, the associated errors 

exceeded the tolerance limits set by international guidelines, raising concerns about their 

direct use for QA without correction. 

The introduction of ML models offers a promising solution to address these 

uncertainties. ML models can effectively handle non-linearity in the data and improve the 

accuracy of parameter predictions, including spot size and symmetry. By mitigating 

uncertainties in log file data, ML based approaches can provide a more robust framework 

for utilising log file data in both machine QA and PSQA. This advancement represents a 

significant step toward improving automation, enhancing reliability, and ensuring precision 

in PBS proton therapy. 

3.5 Conclusions 

This chapter analysed and compared Lynx2D scintillation detector measurement 

data with log file-recorded data for spot parameters in a proton PBS system. The findings 

demonstrate a correlation between the log file and measured data; however, significant 

errors were identified, particularly in spot size and, to a lesser extent, in spot position. These 

discrepancies highlight the limitations of using log file data directly for quality assurance 

processes without correction. 
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The insights gained in this chapter set the stage for the next phase of the study, 

which explores the development of ML models. These models aim to use log file data as 

input and measured data as output to address existing inaccuracies and establish a robust 

framework for improving log file data reliability. This approach represents a critical step 

toward enhancing the precision and efficiency of quality assurance in PBS proton therapy. 
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Title: Development and Validation of Machine Learning Models for Predicting Spot 

Dosimetric Parameters. 

4.1 Introduction 

The ML is revolutionising radiation therapy by introducing advanced 

computational techniques that enhance clinical workflow precision, efficiency, and 

automation. In recent years, ML has emerged as a powerful tool for addressing the 

challenges associated with QA, auto contouring, and treatment planning in proton therapy. 

By leveraging complex algorithms and large datasets, ML models can identify patterns, 

predict outcomes, and optimise processes, leading to more accurate and efficient treatment 

delivery [1,2]. 

The proton radiotherapy system is very complex in nature and requires more 

accuracy in treatment and quality assurance to ensure proper dose delivery to the patient. 

ML models can automate many of the QA workflows to provide a fast and accurate 

troubleshooting mechanism. ML has shown promise in automating QA tasks in proton 

therapy. For example, Grewal et al. [3] utilised GPR and an SNN to predict output and MU 

in a double scattering proton therapy system, using parameters such as range, field size, 

and modulation as inputs to the models. Similarly, Li Z et al. [4] applied feed-forward and 

recurrent neural network models to predict proton therapy range and dose by analysing data 

from proton-induced positron emitters. 

The irradiation log files are the records of the treatment. The log files provide a rich 

data source for ML applications, especially in PBS systems, where they can be used to 

predict spot positions and MU per spot [5]. Dominic Maes et al. [6] demonstrated that ML 

models trained on log files and treatment planning data from 20 PBS patient plans could 

accurately predict delivered spot positions and MU values. The deep learning models have 

been explored for dose calculation improvements. Chao Wu et al. [7] introduced a deep 

learning framework to convert pencil beam dose distributions into MC-equivalent 

distributions, significantly enhancing dose calculation accuracy and integration into 

treatment planning. Additionally, advanced architectures, such as recurrent U-nets and 3D 

convolutional neural networks, have been developed for dose prediction, showing 

promising results [8,9]. 
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Neishabouri A et al. [10] applied a long short-term memory (LSTM) neural network 

to model dose deposition characteristics, successfully capturing variations across the 

entrance region, Bragg peak, and distal fall-off, even in complex and heterogeneous 

geometries. Similarly, Pastor-Serrano et al. [11] used a CNN to predict dose deposition by 

mono-energetic proton beams for different energies and patient geometries, further 

advancing the field. Meijers A et al. [12] explored the use of log file data in conjunction 

with patient breathing patterns to reconstruct 4D dose distributions. Their work enabled 

comparisons between planned and delivered doses by integrating weekly 4D CT scans, 

highlighting the potential of ML and log file data in adaptive proton therapy workflows. 

However, the direct use of log file-recorded data for QA processes, such as spot 

position, size and MU poses challenges. Log file spot position and size are determined 

through a Gaussian fit approximation, introducing inherent uncertainties. These 

uncertainties can exceed the precision of the scanning system, even after magnet 

commissioning [13]. This limitation becomes particularly significant when using log file 

data for pencil beam scanning PSQA or machine QA. Uncertainties in spot parameters can 

result in inaccurate interpretations, potentially affecting treatment accuracy. 

The ML models offer a powerful and comprehensive solution to mitigate 

uncertainties in proton therapy by leveraging advanced data processing techniques. By 

training on extensive, diverse, and high-quality datasets, ML algorithms can identify 

intricate patterns, account for variability in recorded data, and significantly reduce the 

impact of systematic and random errors. This capability firmly establishes ML as an 

indispensable tool for enhancing the reliability and accuracy of log file data, enabling 

precise predictions and ensuring robust quality assurance processes in proton therapy. 

In Chapter 3, a detailed analysis comparing spot parameters measured with the 

Lynx2D scintillation detector to those recorded in log files for a PBS system revealed a 

correlation between the datasets. However, significant discrepancies were identified, 

particularly in spot size and, to a lesser extent, in spot position. These findings highlight 

that the direct use of log file data for analysing the dosimetric parameters of PBS is not 

accurate without applying appropriate corrections. ML models, with their capability to 

handle the non-linearity and inherent complexity of the data, can develop predictive 
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frameworks that utilise log file data to accurately determine spot parameters, ensuring they 

remain within the acceptable tolerance limits and improving overall treatment precision. 

This chapter details the development and validation of ANN-based ML models 

designed to predict spot size along the X, Y major, and minor axis direction of a spot and 

relative spot positional errors along the X and Y axis using irradiation log file data as input. 

The process of model creation, hyper parameter tuning, and validation through various 

statistical tools is systematically summarised in this chapter. 

4.2 Materials and Methods 

4.2.1 Artificial Neural Network (ANN) 

An ANN is a computational model inspired by the structure and function of 

biological neural networks [14]. It consists of layers of interconnected nodes, or neurons, 

that process information. An ANN typically includes an input layer to receive data, one or 

more hidden layers to learn patterns and relationships, and an output layer to produce 

predictions or classifications. Each neuron applies a mathematical operation using weights, 

biases, and an activation function to introduce non-linearity. The network learns by 

adjusting these parameters during training to minimise the error between predicted and 

actual outputs, making it a powerful tool for solving complex, non-linear problems. 

4.2.2 ANN model architecture 

This study developed six distinct ANN models, including X spot size prediction, Y 

spot size prediction, major axis spot size prediction, minor axis spot size prediction, relative 

positional error along the X-axis prediction, and relative positional error along the Y-axis 

prediction. These ANN models are based on the Multi-Layer Perceptron (MLP) 

architecture, which consists of one input layer, three hidden layers, and one output layer 

[15]. The same architecture was applied consistently across all models. The detailed 

architecture specifications are provided below. 

4.2.2.1 Multi-Layer Perceptron (MLP) model 

The MLP model is a class of ANN that consists of multiple layers of interconnected 

nodes, also known as neurons. A schematic diagram of an MLP neural-based model is 

shown in Figure 4.1. The MLP model is a feedforward neural network, meaning data flows 
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from the input layer through the hidden layers to the output layer without looping back. 

The training process involves adjusting the weights and biases of the neurons using 

algorithms like backpropagation and optimisation techniques. These adjustments minimise 

the error between the predicted and actual outputs by iteratively updating parameters based 

on the error gradient. 

The inclusion of one or more hidden layers allows the MLP to model complex, non-

linear relationships between input features and target variables, making it well-suited for a 

wide range of tasks, including regression, classification, and pattern recognition. The 

number of neurons in each layer, the choice of activation functions, and the optimisation 

algorithm significantly influence the model's performance and its ability to generalise to 

unseen data. 

 

Figure 4.1: Schematic diagram of an MLP neural network model with one input layer, two 

hidden layers, and one output layer.  

 In this study, the MLP model creation was carried out in Python, a high-level, 

general-purpose programming language renowned for its readability and extensive support 

for scientific computing. The development environment utilized was Spyder, an open-
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source Integrated Development Environment (IDE) designed specifically for scientific 

programming in Python. Spyder offers features such as advanced editing, analysis, 

debugging, and profiling, making it suitable for data-intensive applications. 

For building and training the ANN, the Keras library was employed. Keras is a 

high-level neural network API that facilitates the creation of deep ML models with minimal 

code [16]. It operates as an interface for the Tensor Flow library, which serves as the 

backend. TensorFlow is an open-source platform developed by Google for ML and AI 

tasks, providing a comprehensive ecosystem of tools and libraries for model development 

and deployment [17]. 

This combination of Python, Spyder, Keras, and TensorFlow provided a robust 

framework for developing the ANN model, enabling efficient experimentation and 

implementation of the MLP architecture for the study. 

Here is the script snippet of how the necessary libraries were imported and the 

Sequential model was instantiated: 

# Python script for importing the sequential model from tensorflow. 

𝑖𝑚𝑝𝑜𝑟𝑡 𝑡𝑒𝑛𝑠𝑜𝑟𝑓𝑙𝑜𝑤 𝑎𝑠 𝑡𝑓  

𝑓𝑟𝑜𝑚 𝑡𝑒𝑛𝑠𝑜𝑟𝑓𝑙𝑜𝑤. 𝑘𝑒𝑟𝑎𝑠. 𝑚𝑜𝑑𝑒𝑙𝑠 𝑖𝑚𝑝𝑜𝑟𝑡 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙  

𝑓𝑟𝑜𝑚 𝑡𝑒𝑛𝑠𝑜𝑟𝑓𝑙𝑜𝑤. 𝑘𝑒𝑟𝑎𝑠. 𝑙𝑎𝑦𝑒𝑟𝑠 𝑖𝑚𝑝𝑜𝑟𝑡 𝐷𝑒𝑛𝑠𝑒 

#𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 

𝑚𝑜𝑑𝑒𝑙 =  𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙()  

4.2.2.2 Input layer parameters 

The input layer is the initial stage where data enters the network. Each neuron in 

this layer represents a specific feature or attribute of the input data, effectively capturing 

the independent variables or predictor variables. The primary function of the input layer is 

to receive these features and transmit them to the subsequent hidden layers for further 

processing.  

In this study, the input variables for all six ML models are taken from the log file 

data. The prediction models for the X and Y spot sizes, as well as the major and minor axis 
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spot sizes, utilized a common set of eight input variables. These variables encompassed the 

X and Y spot sizes recorded in IC23 and IC1, the primary current of the scanning magnets, 

beam current, and gantry angle. In contrast, the models predicting the X-axis and Y-axis 

relative positional errors incorporated nine input variables: The X and Y spot sizes recorded 

in IC23, the X and Y position values recorded in IC23, the X and Y positional errors in 

IC23, the primary current of the X and Y scanning magnets, and the beam current.  

4.2.2.3 Output layer 

The output layer represents the dependent variables, also called the label values. 

The ML model optimises the network to minimize the difference between the predicted 

values and the label values. In this study, the Lynx2D measured spot parameters were used 

as label variables, such as X spot size, Y spot size, Major axis spot size, minor axis spot 

size, X spot relative positional error, and Y spot relative positional error. The Pearson 

correlation coefficient is calculated using the input and output variables.  

4.2.2.4 Hidden Layers 

The hidden layer in a neural network serves as an intermediate stage between the 

input and output layers. It contains neurons that transform the input data by applying 

weighted connections and activation functions, allowing the network to identify and learn 

complex patterns. The structure of the hidden layers, including the number of layers and 

neurons in each layer, influences the model's ability to capture and represent intricate 

patterns within the data. In this study, three hidden layers are used with 30 neurons each 

for all models.  

The following equation demonstrates the calculation of the weighted sum in a 

neuron within a neural network.  

                                     z = i∑wixi + b                                                             (4.1)                                               

Where: 

z: The weighted sum, or the input to the activation function, which is the result of applying 

weights and bias to the input features. 

i∑wixi : The summation of each input feature Xi multiplied by its corresponding weight 

Wi. 
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This operation captures the importance of each input feature based on the learned weights. 

b: The bias term, which allows the neuron to adjust the output independently of the input 

features. It enables the model to shift the activation function, helping the network learn 

better. 

4.2.2.5 Rectified Linear Unit – Activation function 

The activation function is a mathematical operation applied to each neuron's output. 

It introduces non-linearity into the model, enabling the network to learn and represent 

complex patterns in data. Without activation functions, the network would behave as a 

linear model, regardless of its depth, limiting its ability to solve non-linear problems. 

Activation functions also help regulate the flow of information through the network, 

ensuring effective learning during training. 

One of the most widely used activation functions in ANN models is the Rectified 

Linear Unit (ReLU) [18]. It is preferred due to its simplicity, efficiency, and ability to 

introduce non-linearity. In this study, the ReLU activation function is used for all models. 

The ReLU function is mathematically defined as: 

                          f(x) = max(0, x)                                                                     (4.2) 

                                𝑓′ (𝑥) = {
1 𝑖𝑓 𝑥 > 0
0 𝑖𝑓 𝑥 ≤ 0

                                                                     (4.3) 

When a neuron's output consistently falls in the non-positive range (𝑥 ≤ 0)  its 

gradient becomes zero, effectively rendering the neuron inactive. This means that for values 

of (𝑥 ≤ 0), the ReLU function will output zero, and the gradient during backpropagation 

will not update the weights associated with those neurons. The simplicity of this operation 

ensures computational efficiency, making ReLU a natural choice for large-scale models. 

Figure 4.2 represents the schematic diagram of the ReLU activation function.  
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Figure 4.2: The visualisation of ReLU activation function.  

The ReLU activation function is used in this study because it introduces non-

linearity, enabling the model to capture complex patterns in the log file data, which is 

essential for accurate spot parameter prediction. Additionally, ReLU helps prevent the 

vanishing gradient problem, ensuring effective learning in deeper neural networks. Its 

computational simplicity speeds up the training process, making it well-suited for handling 

large datasets. Furthermore, the sparse activations generated by ReLU direct the model’s 

focus to the most relevant features, reducing overfitting and enhancing generalisation. 

4.2.2.6 Optimiser 

An optimizer in an ANN model is an algorithm that adjusts the model's weights and 

biases to minimize the loss function and improve performance. It updates the parameters 

by calculating the gradients of the loss function and modifying the weights accordingly. 

Model training is done by optimising the weights and bias of each neuron in the hidden 

layers to reduce the error in the prediction. In this study, an optimiser called Adaptive 

Moment Estimation (Adam) is a widely used gradient-based optimization algorithm for 

training ML models [19]. It combines the strengths of two other optimizers: Momentum 

and RMSprop, to provide efficient and effective updates to the model's parameters.  
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The Adam optimizer is a highly regarded algorithm in ML due to its ability to adjust 

learning rates for individual parameters dynamically. It achieves this by leveraging the first 

and second moments of the gradients, which helps maintain stability and ensures efficient 

convergence. The algorithm also employs momentum by averaging past gradients, which 

smooths updates and effectively handles noisy or sparse gradients. Additionally, Adam 

corrects biases in these moving averages, particularly early in training, when the estimates 

are skewed towards zero. Typically, the default learning rate for Adam is set to 0.001, 

which serves as a reliable starting point, though it can be fine-tuned to meet specific 

requirements.  

The Adam optimizer is used in this study due to its key features adaptive learning 

rates, momentum integration, and bias correction. These attributes allow Adam to 

efficiently adjust the learning rate during training, improving convergence speed and model 

performance. By incorporating momentum, Adam helps accelerate learning in relevant 

directions, while bias correction ensures more accurate parameter updates, especially 

during the initial stages of training. 

The Adam maintains two moving averages during training 

First moment (𝑚𝑡 ): The mean of the gradients (similar to momentum) 

Second moment (𝑣𝑡): The mean of the squared gradients (used for scaling). 

The algorithm's update rules are: 

1. Compute Gradient: 

        𝑔𝑡 = ∇𝜃𝑡
 𝐽(𝜃𝑡)                                                              (4.4) 

where 𝑔𝑡 is the gradient of the loss function; 𝐽(𝜃𝑡) with respect to the model parameters; 

𝜃𝑡 at time step 𝑡. 

2. Update Moving Averages: 

                                    𝑚𝑡 =  𝛽1 𝑚𝑡−1 + (1 − 𝛽1 )𝑔𝑡                                                     (4.5) 

 

                                     𝑣𝑡 =  𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2                                                       (4.6) 

Here 𝛽1 (default 0.9) and 𝛽2 (default 0.999)  are decay rates for the moving averages. 
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3. Bias Correction:  

Since 𝑚𝑡 and 𝑣𝑡 are initially biased toward zero, the corrected values are: 

                                                 𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡                                                                       (4.7) 

                                                 𝑣𝑡 =
𝑣𝑡

1−𝛽2
𝑡                                                                                       (4.8) 

4. Parameter Update:  

Parameters are updated using: 

                                        𝜃𝑡+1 = 𝜃𝑡 − 𝜂
𝑚̂𝑡

√𝑣̂𝑡+𝜖
                                                                             (4.9) 

Where 𝜂 is the learning rate and 𝜖 is a small constant to avoid division by zero.  

4.2.2.7 Loss function 

A loss function is a mathematical function used to measure the difference between 

the predicted output of an ML model and the actual target values. It quantifies how well or 

poorly the model is performing. The goal during training is to minimize this loss function, 

which helps to optimize the model’s parameters (e.g., weights in a neural network) so that 

predictions are as close as possible to the actual outcomes. 

In this study, used MSE as the loss function [20]. MSE is commonly used in 

regression tasks, where the objective is to predict continuous values.  

4.2.3 Model training  

The training process for the six ML models X spot size prediction, Y spot size 

prediction, major axis spot size prediction, minor axis spot size prediction, X spot relative 

positional error prediction, and Y spot relative positional error prediction was carefully 

structured to ensure accuracy and reliability. The input and target values for these models 

and also the architecture of the models are presented in Figures 4.3 and 4.4. The log file 

recorded data used as input variables and the scintillator measured data used as output or 

label values. While the four spot size prediction models shared 8 input variables as shown 

in Figure 4.3, the two positional error prediction models used 9 input variables, as 
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illustrated in Figure 4.4. These specific configurations ensured that each model was tailored 

to its respective predictive task. 

Figure 4.3: The ANN model architecture of the spot size prediction models. The x-spot 

size, y-spot size, major axis spot size and minor axis spot size prediction models are shown 

in the figure. All four models share the same input variables, hidden layers and hyper 

parameters. *IC- Ionisation chamber.  

The data used for this study was divided into three parts: 70 % for model training, 

15 % for evaluation, and 15 % for testing. All models followed a uniform architecture, 

employing the ReLU activation function in the hidden layers. ReLU introduced essential 

non-linearity, enabling the models to learn intricate patterns by selectively activating 

neurons based on their input. The training spanned 100 epochs with a batch size of 30, 

which provided a balance between computational efficiency and stable updates. 
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Figure 4.4: The ANN model architecture of the relative positional error prediction models. 

The x-spot relative positional error and y-spot relative positional error prediction models 

are shown in the figure. All the two models share the same input variables, hidden layers 

and hyper parameters. * IC- Ionisation chamber. 

During each training epoch, the models adjusted weights and biases for neurons to 

produce predictions based on the input data. The MSE loss function was used to calculate 

the error by measuring the squared difference between predicted and true values. This error 

was then used by the Adam optimizer, which adjusted the model parameters by applying 

adaptive learning rates and momentum to progressively minimize the error. This iterative 

process continued across all epochs, fine-tuning the models to enhance their predictive 

accuracy. The combined use of ReLU, MSE, and Adam ensured an effective training 

process, resulting in models capable of generating highly reliable predictions.  

4.2.4 Model validation 

Model validation plays a crucial role in evaluating the effectiveness and 

generalizability of ML models. It helps to ensure that the models are not overly tuned to 

the training data and can make accurate predictions on new, unseen data. In this study, 

model validation was essential to verify the reliability and precision of the developed 

models in predicting spot sizes and positional errors. By applying various validation 
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techniques, assessed how well the models generalized to different datasets, ensuring their 

predictive capabilities in practical, clinical settings. This process also allows for identifying 

any biases or weaknesses, leading to necessary refinements.  

In this study, the model validation tools employed include quantitative analysis 

through the calculation of metrics such as RMSE, MSE, R-squared, and Mean Absolute 

Percentage Error (MAPE), as well as qualitative analysis using tools such as histogram of 

residuals, scatter plot of errors, and Q-Q plot, and cross-validation using K fold cross 

validation method as outlined below. 

4.2.4.1 Quantitative analysis 

Each quantitative metric provides a unique perspective: RMSE and MSE offer 

insights into the magnitude of errors, with RMSE being more interpretable in the original 

units of the data. 𝑅2 helps assess the proportion of variance explained by the model, 

indicating its overall fit. MAPE provides a percentage-based measure of error, making it 

scale-independent. Together, these metrics offer a comprehensive analysis, ensuring a 

thorough evaluation of model accuracy and robustness from different angles. 

4.2.4.1.1 Mean Squared Error (MSE) 

The MSE is a fundamental metric used to evaluate the performance of predictive 

models by measuring the average squared difference between predicted values and actual 

values It indicates how well a model captures the underlying patterns in the data, with 

smaller MSE values signifying higher accuracy. Unlike RMSE, MSE does not involve 

taking the square root, making it more sensitive to large errors. The formula for MSE is 

                               MSE =  
1

𝑛
∑ (𝑦𝑖

𝑝𝑟𝑒𝑑 −  𝑦𝑖
𝑡𝑟𝑢𝑒)2𝑛

𝑖=1                                                   (4.10) 

Here,  

𝑛  is the number of observations. 

𝑦𝑖
𝑝𝑟𝑒𝑑

  represents the predicted values. 

𝑦𝑖
𝑡𝑟𝑢𝑒    represents the true values. 

In this study, the MSE of the model residuals was calculated for all six ML models 

and plotted to analyse the data's normality and assess the accuracy of each model's 
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predictions. By comparing the MSE values across models, insights were gained into their 

relative performance. 

4.2.4.1.2 Root Mean Squared Error (RMSE) 

The RMSE is a commonly used measure to assess the performance of predictive 

models by quantifying the average deviation between predicted values and observed values 

It is computed as the square root of the mean of the squared differences between these 

values, providing a single value that represents the model's accuracy. Smaller RMSE values 

indicate that the model's predictions are closer to the actual values. The RMSE formula is: 

 

                           RMSE =  √
1

𝑛
∑ (𝑦𝑖

𝑝𝑟𝑒𝑑 −  𝑦𝑖
𝑡𝑟𝑢𝑒)2𝑛

𝑖=1                                                  (4.11) 

Here,  

𝑛  is the number of observations. 

𝑦𝑖
𝑝𝑟𝑒𝑑

  represents the predicted values. 

𝑦𝑖
𝑡𝑟𝑢𝑒    represents the true values. 

In this study, the RMSE of the model residuals was computed and visualized for all 

six ML models to assess data normality and verify the accuracy of their predictions 

4.2.4.1.3 Mean Absolute Percentage Error (MAPE)  

The MAPE is a widely used metric to evaluate the accuracy of a predictive model, 

particularly in regression problems. Unlike MSE and RMSE, MAPE measures the error as 

a percentage of the actual values, making it easier to interpret, especially when comparing 

models across different datasets. MAPE calculates the average of the absolute percentage 

differences between the predicted values and the actual values. 

The formula for MAPE is: 

                𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑖
𝑝𝑟𝑒𝑑

− 𝑦𝑖
𝑡𝑟𝑢𝑒

𝑦𝑖
𝑡𝑟𝑢𝑒 | 𝑋 100𝑛

𝑖=1                                                    (4.12) 
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In this study, in addition to MSE and RMSE, also calculated MAPE also for the 

spot size prediction models. However, The MAPE metric was not computed for the 

positional error prediction models due to the potential for the MAPE to produce undefined 

or infinite values when actual values are zero or close to zero. 

4.2.4.1.4  R-squared (𝑹𝟐) –Coefficient of determination 

R-squared (𝑅2) also referred to as the coefficient of determination, is a statistical 

metric that assesses the proportion of the variance in the dependent variable that can be 

explained by the independent variables in a regression model. It indicates how well the 

model fits the data. A higher 𝑅2 value suggests that the model explains a larger portion of 

the variance, whereas a lower value indicates a poorer fit. 

The formula for calculating 𝑅2 is : 

                                𝑅2 = 1 −
∑ (𝑦𝑖

𝑡𝑟𝑢𝑒− 𝑦𝑖
𝑝𝑟𝑒𝑑

)2𝑛
𝑖=1

∑ (𝑦𝑖
𝑡𝑟𝑢𝑒− 𝑦̅𝑖)2𝑛

𝑖=1

                                                          (4.13) 

here,  

𝑦̅𝑖  is the mean of the observed values. 

The interpretation of 𝑅2 is as follows: when 𝑅2=1, the model fully captures the 

variance in the data, indicating perfect prediction accuracy. If 𝑅2 =0, the model does not 

account for any variance and performs no better than predicting the mean value. A value of 

𝑅2 between 0 and 1 suggests that the model explains some variance in the data, but there is 

still scope for enhancing the model's performance.  

In this study, calculated 𝑅2 for all six ML models to assess the proportion of 

variance explained by each model. This evaluation helps to understand how well each 

model fits the data and captures the underlying patterns. 

4.2.4.2 K-fold cross-validation 

To ensure the reliability and robustness of the ML models, K-fold cross-validation 

was employed. This technique is widely used in ML to evaluate the performance of 

predictive models on datasets [21]. The concept of k-fold cross-validation involves splitting 

a dataset into equal parts or folds. Then, the model was trained and evaluated k times using 

a different fold as the test set and the rest of the folds as the training set. K-fold cross-
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validation aids in assessing the generalisation performance of a model and mitigates the 

risk of overfitting. The performance metrics, such as RMSE, are then averaged across all 

folds to provide a more accurate estimate of the model’s generalizability and overall 

performance. The resulting performance metrics can better estimate the model's 

performance on new, unseen data by training the model on different training sets. Figure 

4.5 illustrates the application of K-fold cross-validation within a machine-learning model. 

In this study, K was set to 5 for cross-validation. The six models were validated by 

dividing the dataset into 5 folds, and the prediction accuracy of each model was assessed 

by calculating the RMSE for the predictions made with each fold. 

 

Figure 4.5: Graphical representation of how the K fold cross-validation works in a model 

validation (Picture courtesy Sevinç E et al [21]) 
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4.2.4.3 Quartile- Quartile plot (Q-Q) plot 

The ML model prediction accuracy can be evaluated by plotting the residual 

(difference between the predicted and true value) values. If the ML model is well-calibrated 

or prediction accuracy is good, these residuals should ideally follow a normal distribution. 

The Q-Q plot is a method to evaluate the normality of the residual plot [22].  

Figure 4.6: Q-Q Plots Demonstrating Distribution Characteristics: (a) Normal Distribution, 

(b) Heavy Tails, (c) Left-Skewed Data, (d) Right-Skewed Data, and (e) Data with Outliers.  

(Pleil JD et al [22]). 
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The Q-Q plot is based on the concept of quantiles. Quantiles divide a dataset into 

equal intervals, and the Q-Q plot compares the quantiles of the observed data against the 

quantiles of a reference theoretical distribution. If the two distributions are similar, the 

points will lie approximately on a straight line. 

Different Q- Q plot types are depicted in Figure 4.6 and the details are given below.  

(a) Normal distribution – points align along the line: 

This plot displays data sampled from a normal distribution. The data points align well with 

the reference line, showing that the sample quantiles closely follow the theoretical 

quantiles, confirming the dataset's normality. 

(b) Systematic deviation (heavy tails): 

The plot shows systematic deviations of data points from the reference line, especially at 

the extremes. This pattern is characteristic of heavy-tailed distributions, such as the t-

distribution with a low degree of freedom. 

(c) Left skewed data: 

This plot depicts a dataset with left skewness. The points dip below the reference line at 

smaller quantiles and rise above it at larger quantiles, indicating an extended tail on the left 

side of the distribution. 

(d) Right skewed data: 

The dataset in this plot exhibits right skewness. Points rise above the line at smaller 

quantiles and fall below it at larger quantiles, reflecting an extended tail on the right side 

of the distribution.  

(e) Data with outliers: 

This plot highlights the presence of outliers in the dataset. While most data points are close 

to the reference line, a few extreme points deviate significantly, indicating anomalies or 

rare observations in the data. 

 In this study, the Q-Q plot is used to analyse the normality of the residuals of all six 

ML models.  
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4.2.4.4 Histogram of Residuals 

A histogram of residuals is a visual tool used to examine the distribution of 

residuals, which are the differences between the actual and predicted values in a model. 

This plot allows you to check if the residuals follow a normal distribution, an assumption 

often required in regression analysis. Ideally, a symmetrical, bell-shaped histogram 

indicates that the errors are normally distributed, suggesting a good fit for the model. 

However, if the histogram shows significant skewness or irregular patterns, it could point 

to problems such as outliers, incorrect model assumptions, or non-linearity. 

4.3 Results 

4.3.1 Correlation Analysis Between Input and Output Variables 

The Pearson correlation coefficients were calculated to assess the relationships 

between the label values (scintillator-measured parameters) and the input variables (log 

file-recorded data) for six ML models. These correlation values are presented in Table 4.1 

and Table 4.2. While many input variables exhibit strong correlations with the label values, 

some variables show weaker relationships. For instance, the correlation between the x 

positional error and the x-spot size recorded in IC23 is only 0.19, indicating a weak linear 

association. This suggests that some input variables may not contribute significantly to 

predictive performance if only linear relationships are considered. 

However, ANNs are designed to capture complex, non-linear dependencies 

between variables. Unlike traditional linear models, ANNs can identify intricate patterns 

and relationships that may not be evident through simple linear correlation analysis. 

Therefore, even variables with poor Pearson correlation values, such as the x positional 

error, may still contain valuable information for the ANN model. 

To ensure comprehensive training and to leverage the ability of ANNs to identify 

non-linear interactions, all input variables tabulated were included in the ANN model 

training process. This approach allows the model to explore and utilise hidden 

dependencies that linear correlation measures, such as the Pearson coefficient, might 

overlook. 
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Table 4.1: The person correlation coefficients between the input variables and label values 

of the x spot size, y spot size, major axis spot size and minor axis spot size prediction ANN 

models.  

 

Table 4.2: The Pearson correlation coefficients between the input variables and label values 

of the x and y relative positional error prediction ANN models.  

Pearson correlation coefficients 

 label values (Scintillator measured data) 

input variables (log file data) Relative X  positional 

error 

Relative Y  positional 

error 

X spot size recorded in IC23 0.191 0.182 

Y spot size recorded in IC23 0.186 0.184 

X position recorded in IC23 0.884 -0.301 

Y position recorded in IC23 -0.233 -0.748 

X positional error recorded in the 

IC23 

0.874 0.295 

X positional error recorded in the 

IC23 

-0.485 0.817 

X-scanning magnet’s primary 

current 

0.870 -0.327 

Y-scanning magnet’s primary 

current 

-0.321 -0.730 

Beam current -0.330 -0.420 

Pearson correlation coefficients 

 label values (Scintillator measured data) 

input variables (log file 

data) 

X spot 

size 

Y spot 

size 

Spot size along the 

major axis 

Spot size along the 

minor axis 

X spot size recorded in 

IC23 

0.971 0.974 0.972 0.971 

Y spot size recorded in 

IC23 

0.978 0.974 0.975 0.977 

X spot size recorded in 

IC1 

0.832 0.832 0.832 0.829 

Y spot size recorded in 

IC1 

0.751 0.749 0.748 0.750 

X-scanning magnet’s 

primary current 

-0.946 -0.943 -0.942 -0.945 

Y-scanning magnet’s 

primary current 

-0.977 -0.978 -0.977 -0.976 

Beam current 0.596 0.597 0.596 0.597 
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4.3.2 Model Hyper parameter tuning 

Hyper parameter tuning plays a pivotal role in optimising the performance of ML 

models by identifying configurations that achieve the best balance between accuracy and 

computational efficiency. In this study, various configurations of neural networks were 

systematically explored to minimise the loss function across six models. Key hyper 

parameters were adjusted, including the number of hidden layers (2 and 3), the number of 

neurons per layer (30 and 50), epochs (200,100 and 50), the batch size (30 and 100), and 

the learning rate (0.01 and 0.001) for the Adam optimiser. These adjustments created three 

different configurations for each model, allowing for a thorough evaluation of the impact 

of architectural and training dynamics on model performance.  

Three scenarios were tested for each model to determine the optimal combination 

of hyper parameters. The results consistently indicated that the configuration of 3 hidden 

layers with 30 neurons per layer, a batch size of 30, and a learning rate of 0.001 yielded the 

lowest RMSE values. As summarised in Table 4.3, this combination demonstrated superior 

performance across all models, ensuring robust generalisation to unseen data while 

maintaining computational efficiency. This systematic approach provided valuable insights 

into the influence of hyper parameter choices, leading to the selection of a configuration 

that effectively optimises the learning process and enhances model precision. Figure 4.7 

plots the model accuracy metrics for the X spot size prediction model, showing a reduction 

in MAPE (%) as epochs increase.  

 

 

 

 

 

Figure 4.7: Model accuracy metrics plot for the X spot size prediction model, showing a 

reduction in MAPE (%) as epochs increase. Train- training data, Val- validation set. 
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Table 4.3: The summary of different hyper parameter combinations used for the six ML 

model tuning and the obtained RMSE and R-square are tabulated.  

 

4.3.3 Model Performance Evaluation 

The trained models were evaluated using a testing dataset comprising 15  % of the 

overall data, a subset not employed in the initial model generation process. Each model’s 

prediction accuracy was evaluated using a few statistical evaluation metrics. Table 4.4 

presents a concise overview of the evaluation metrics for the six ML models. It offers a 

consolidated and comprehensive view of the performance assessments for each ML model. 

The metrics include MSE, MAPE, RMSE, R-square, and maximum prediction error. The 

Model Training Hidde

n 

layers 

Epo

chs 

Neurons 

in each 

layer 

Batch 

size 

Learni

ng 

rate 

RMS

E 

(mm) 

R-

Squar

e 

X spot 

size 

Training 1 2 200 50 100 0.01 0.075 0.989 

Training 2 3 100 30 30 0.001 0.051 0.993 

Training 3 3 50 30 30 0.001 0.065 0.990 

Y spot 

size 

Training 1 2 200 50 100 0.01 0.065 0.985 

Training 2 3 100 30 30 0.001 0.050 0.992 

Training 3 3 50 30 30 0.001 0.072 0.980 

Major axis 

spot size 

Training 1 2 200 50 100 0.01 0.073 0.975 

Training 2 3 100 30 30 0.001 0.049 0.998 

Training 3 3 50 30 30 0.001 0.067 0.981 

Minor axis 

spot size 

Training 1 2 200 50 100 0.01 0.073 0.975 

Training 2 3 100 30 30 0.001 0.049 0.998 

Training 3 3 50 30 30 0.001 0.067 0.981 

Relative X  

positional 

error 

Training 1 2 200 50 100 0.01 0.052 0.981 

Training 2 3 100 30 30 0.001 0.030 0.991 

Training 3 3 50 30 30 0.001 0.045 0.989 

Relative Y  

positional 

error 

Training 1 2 200 50 100 0.01 0.054 0.982 

Training 2 3 100 30 30 0.001 0.030 0.996 

Training 3 3 50 30 30 0.001 0.047 0.987 
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spot size measurement models demonstrated excellent prediction accuracy, with MSE 

values below 0.0028 mm and MAPE below 1 %. The highest observed RMSE value is 

0.050 mm (R-square 0.991). In the relative positional error prediction models, the y relative 

positional error prediction model exhibited the highest MSE value of 0.001 mm, with an 

RMSE of 0.035 mm (R-square of 0.996).  

Table 4.4: The evaluation matrices of all the Six ML Models. The values of MSE, MAPE, 

RMSE, R- square and maximum error of each ML model. 

NA – Not applicable, MSE- Mean squared error, MAPE – Mean absolute percentage error, 

RMSE- Root mean squared error, R-square- Coefficient of determination 

*The MAPE (%) is not calculated for the relative positional error prediction model. 

Figure 4.8 illustrates the results of the six ML models, showcasing the comparison 

between the measured and predicted parameters. The linear relationship depicted in the 

figure provides a visual representation of the prediction accuracy for each model.  

ML Models MSE(mm) MAPE(%) RMSE(mm) R-Square max error 

(mm) 

X spot size prediction 0.003 0.991 0.050 0.993 0.251 

Y spot size prediction 0.002 0.892 0.050 0.992 0.255 

Spot size along major 

axis prediction 

0.003 0.942 0.050 0.998 0.300 

Spot size along minor 

axis prediction 

0.002 0.950 0.050 0.994 0.311 

Relative X  positional 

error prediction 

0.001 

 

NA* 0.030 

 

0.991 

 

0.160 

 

Relative Y positional 

error prediction 

0.001 

 

NA* 0.030 

 

0.996 

 

0.170 
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Figure 4.8: Plots of measured and ML model predicted spot parameters. (a) The measured 

and predicted X spot size. (b) The measured and predicted Y spot size. (c) The measured 

versus predicted relative positional error in the X direction. (d) The measured versus 

predicted relative positional error in the Y direction. (e)The measured versus predicted 

Major axis spot sizes. (f) The measured versus predicted Minor axis spot sizes 

Table 4.5 presents the results of K-fold (k=5) cross-validation, showing the 

excellent performance of the models. Remarkably, all the RMSE values are below 0.150 
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mm, indicating minimal average differences between the predicted and actual values. 

Additionally, all the R-square values exceeding 0.960 signify an exceptional degree of 

variance explained by the models, highlighting a strong relationship between the predictors 

and the target variable. A good result in k-fold cross-validation indicates that the model is 

robust and consistent across different partitions of the data, reducing the risk of overfitting 

to a specific subset. It suggests the model will likely generalize well to new, unseen data. 

Table 4.5: Root Mean Square Error (RMSE) and R-Square Values of the K-Fold Cross-

Validation (k=5) of Six ML Models. 

 RMSE(R-square) values of K fold (k=5) cross-validation  

in mm 

ML Models Fold 1 

(R-

square) 

Fold 2 

(R-square) 

Fold 3 

(R-

square) 

Fold 4 

(R-

square) 

Fold 5 

(R-

square) 

X spot size prediction 0.068 

(0.996) 

0.074 

(0.995) 

0.108 

(0.989) 

0.056 

(0.997) 

0.053 

(0.998) 

Y spot size prediction 0.085 

(0.994) 

0.083 

(0.993) 

0.112 

(0.988) 

0.083 

(0.994) 

0.080 

(0.994) 

Spot size along major axis 

prediction 

0.120 

(0.987) 

0.113 

(0.988) 

0.123 

(0.986) 

0.109 

(0.989) 

0.097 

(0.992) 

Spot size along minor axis 

prediction 

0.090 

(0.992) 

0.127 

(0.984) 

0.147 

(0.979) 

0.098 

(0.991) 

0.110 

(0.988) 

Relative X positional error 

prediction 

0.032 

(0.993) 

0.029 

(0.994) 

0.052 

(0.977) 

0.034 

(0.990) 

0.032 

(0.993) 

Relative Y positional error 

prediction 

0.031 

(0.991) 

0.045 

(0.981) 

0.055 

(0.963) 

0.038 

(0.983) 

0.033 

(0.987) 

RMSE- Root Mean Squared Error, R-Square- Coefficient of determination.  

Figure 4.9 shows the histogram of the residuals (difference between true and 

predicted values) for the six models. All the plots exhibit a normal distribution of data with 

a mean near zero; a normally distributed residual plot in an ML prediction model suggests 

unbiased and accurate predictions, validates the model’s assumptions, and enhances the 

reliability of inference. It provides confidence in the model's performance and supports its 

applicability in making reliable predictions on new, unseen data.  
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Figure 4.9: Histogram of residuals (Difference between measured and predicted) of the ML 

models. (a) Histogram of residuals of the X spot size prediction model. (d) Histogram of 

residuals of the Y spot size prediction model. (c) Histogram of residuals of the X relative 

positional error prediction model. (d) Histogram of the Y relative positional error prediction 

model. (e) Histogram of residuals of the Major axis spot size prediction model. (f) 

Histogram of Minor axis spot size prediction model. 
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The normality was again tested using the Q-Q plot (Figure 4.10). The Q-Q plot is 

an additional diagnostic tool to confirm the normality assumption. All the points in the Q-

Q plot follow the reference line. The histogram and Q-Q plot indicate that the model's 

predictions are mainly close to the true values. 

 

Figure 4.10: Quartile- Quartile (Q-Q) plot of the model residuals. (a) Q-Q plot of residuals 

of the X spot size prediction model. (b) Q-Q plot of residuals of the Y spot size prediction 

model. (c) Q-Q plot of residuals of the X relative positional error prediction model. (d) Q-

Q plot of residuals of the Y relative positional error prediction model. (e) Q-Q plot of the 
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residual of the Major axis spot size prediction model. (f) Q-Q plot of residuals of the Minor 

axis spot size prediction model. 

4.4 Discussion 

The PBS proton therapy beam delivery system is complex and needs rigorous QA 

protocols to ensure accurate dose delivery to the patient. Our institute’s standard protocol 

for the daily dosimetric QA includes measurement of machine output using a parallel plate 

chamber, proton range verification using a Multilayer ionisation chamber, and spot size 

and positional accuracy verification using the Lynx 2D detector. The average time for the 

daily dosimetric QA is 1.30 hours. Different compact daily QA phantoms are available for 

daily QA within 30 minutes [23,24]. In a proton therapy centre with multiple treatment 

rooms, it's challenging to use quality assurance equipment across all the rooms efficiently 

and make the most of clinical hours. The spot measurement for different energies in 

different gantry angles requires attaching the detector to the machine head and proper tilt 

correction, which is time-consuming. Therefore, there was a need to investigate more 

straightforward methods to address this challenge.  

Current study aimed to develop accessible and cost-effective solutions for daily 

verification of proton spot characteristics by leveraging ML models and irradiation log file 

data. This chapter outlines the development and validation of ML models designed to 

predict spot dosimetric parameters using log files as input. Newpower MA et al. [5] 

developed a neural network model for predicting the spot position using measured and log 

file recorded spot position data. The MSE of the prediction model was 0.300 mm. A similar 

study was done by Maes D et al. [6], and the maximum MSE value of the position 

prediction model was 0.150 mm. In this study, the models demonstrated high precision, 

with RMSE values below 0.05 mm for predicting X, Y, major, and minor axis spot sizes. 

The maximum prediction error was under 0.3 mm, and the MPAE remained below 1 %. 

These results align well with the AAPM TG-224 [25] recommended tolerance of 10 % for 

spot size accuracy and 1 mm for positional error, highlighting the reliability of the ML 

models compared to established benchmarks. 

Similarly, the ML models for relative positional error prediction achieved an RMSE 

of less than 0.03 mm, with a maximum error of just 0.17 mm, demonstrating exceptional 

precision. These findings highlight the utility of ML models in routine machine QA, 
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offering a reliable, efficient, and manpower-saving alternative to traditional methods that 

often rely on physical dosimeters. The application of these models ensures robust QA 

processes, enhancing the effectiveness and efficiency of modern proton therapy systems. 

By analysing Figure 4.8 it becomes apparent that the ML models exhibit accurate 

and precise predictions of the spot parameters using the log file data. Notably, all the curves 

in Figure 4.8 demonstrate a linear relationship, indicating a high level of prediction 

accuracy.  

Hyper parameter tuning plays a critical role in optimizing the performance of ML 

models used in this study. Hyperparameters, unlike model parameters, are not learned 

during training but must be predefined and carefully selected to ensure the model's 

reliability and accuracy. Key hyper parameters tuned in this study included the learning 

rate, batch size, number of hidden layers and number of neurons per layer. The multiple 

combinations of hyper parameters help to find optimum solutions for the six ML models. 

The combination of 3 hidden layers with 30 neurons each and 100 epochs with a batch size 

of 30 and learning rate for Adam optimizer 0.001 yielded the best results for all the six 

models with RMSE less than 0.05 mm (𝑅2- 0.99) for all four spot size prediction models 

and similarly for spot relative positional error models the RMSE was less than 0.03 mm 

(𝑅2 0.99).  

The model performance was evaluated using the K-fold cross-validation technique 

with k=5. Table 4.5 summarises the results, showing that the maximum RMSE among the 

four spot size prediction models was less than 0.14 mm (𝑅2 >0.97), while the maximum 

RMSE for spot relative positional error prediction models was under 0.06 mm (𝑅2 >0.96). 

These results demonstrate the high accuracy and reliability of the models, with minimal 

prediction errors. The consistently low RMSE values across folds confirm the models' 

robustness and strong generalisation capabilities. This ensures their suitability for practical 

applications, such as routine quality assurance in proton therapy, where precision and 

consistency are critical. 

The residuals for all six models were examined using histograms (Figure 4.9) and 

Q-Q plots (Figure 4.10). The histogram showed a normal distribution with a mean near 

zero, indicating unbiased and accurate predictions. This supports the model's reliability and 

validates the assumptions made during model development. The normality assumption was 
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further confirmed by the Q-Q plot, where all points closely followed the reference line. 

These findings provide confidence in the models' performance and demonstrate their 

suitability for making reliable predictions on unseen data. 

Extensive literature has discussed using spot positions from the log file for patient-

specific quality assurance (PSQA). In a study by Belosi MF et al. [34], more than 95 % of 

the plans passed their gamma criteria compared to the log file-based reconstruction and 

calculated dose planes. The log file can be a potential tool for machine QA and PSQA. 

However, many studies focused on spot position and MU prediction using log file data, and 

there are no studies on spot size prediction using log files. The spot size prediction model 

validation results show the accuracy of the models. These results highlight the reliability 

of the ML models for predicting proton spot size and relative positional error. The spot size 

prediction models will facilitate the analysis of daily variations in spot size without 

requiring measurements using dosimeters such as scintillators.  

4.5 Conclusions 

In conclusion, this study successfully demonstrates the application of ML models 

for accurate and efficient daily verification of proton spot characteristics, offering a 

significant advancement in routine quality assurance processes in proton therapy. By 

leveraging irradiation log file data, the developed models for predicting spot size and 

relative positional error achieved high precision, with RMSE values consistently below 

0.05 mm for spot size and below 0.03 mm for positional error. These results align with the 

AAPM TG-224 recommended tolerances, underscoring the reliability and robustness of the 

ML models. The models' performance was further validated through K-fold cross-

validation, histograms, and Q-Q plots, ensuring their generalisation capabilities and 

confirming their suitability for deployment in clinical environments. 

The successful implementation of ML models for proton spot size and positional 

error prediction addresses the challenges of time-consuming, resource-intensive traditional 

QA methods. By providing an accessible, cost-effective alternative that reduces the need 

for physical dosimeters, the models contribute to enhanced operational efficiency and 

streamlined workflows in proton therapy centres. This work also lays the foundation for 

future applications of log file data in proton therapy, particularly in patient-specific quality 
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assurance, and demonstrates the growing potential of ML in optimising and automating 

clinical QA procedures. 
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Chapter 5 

Title: Development of an In-House Tool for PSQA Analysis Using Machine 

Learning Models and Log File Data. 

5.1 Introduction 

Proton therapy is a highly precise and effective form of radiation therapy used to 

treat cancer, leveraging the unique physical properties of protons to deliver targeted doses 

to tumours while minimizing damage to surrounding healthy tissues. This ability to deliver 

precision has made proton therapy a vital tool in modern radiation oncology. However, the 

clinical effectiveness of proton therapy depends on the accurate delivery of the proton 

beams as specified by the treatment plan, necessitating thorough QA procedures to ensure 

consistent and reliable performance across multiple treatment sessions. 

There are many studies to simplify the QA of proton therapy systems using 

advanced tools such as the MC dose algorithm and automation. A study by Liu C et al. [1] 

introduced a fast MC-squared dose calculation algorithm to cross-check doses from the 

Raystation TPS, showcasing the integration of MC-based methods to improve dose 

verification in proton therapy. Similarly, Albertini F et al. [2] developed the first clinical 

online adaptive re-planning system, relying solely on machine log files and in-room CT 

images.  Several studies have utilized MC and log files, which record spot position and MU 

values for secondary dose evaluation [3,4,5]. These studies exclusively relied on log file 

data and employed gamma analysis for verification. However, a limitation of MC-based 

dose evaluation is its reliance on GPU-based systems for rapid calculations. Despite this, 

MC-based methods remain valuable as they eliminate the need for dedicated dosimeter 

measurements, which consume significant beam time and manpower [6]. 

A study by Toscano S et al. [7] evaluated the uncertainties in data recorded in log 

files, particularly in spot position and MU. This research underscores that log-file data 

carries inherent uncertainties, which must be carefully considered when using log files 

directly in Monte Carlo-based dose calculations. Addressing these uncertainties in dose 

evaluation ensures a more accurate assessment of treatment delivery quality, emphasizing 

the importance of accounting for limitations of log files in PSQA workflows. The detailed 

analysis of log file data and its correlation with dosimetric parameters measured using a 

dedicated dosimeter is very important to avoid any wrong interpretation of data if solely 
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depends on data in the log file for PSQA and machine QA. Ates O, et al [8] did a detailed 

study of the log file data of the PROBEAT-V proton therapy system (Hitachi Ltd., Tokyo, 

Japan) of 6-year data. The results suggest that the log file data analysis is a very good tool 

for tracking the performance of the machine over time.  

The irradiation log file of a PBS proton therapy system contains vast amounts of 

data, making manual analysis and interpretation both labour-intensive and time-consuming. 

Automating log file analysis through scripting provides a practical and efficient solution, 

improving time management and simplifying the workflow. Chapter 3 discussed the 

uncertainties associated with log file data, emphasizing that addressing these uncertainties 

is critical to enhancing the reliability of log files for machine QA and PSQA workflows.  

Chapter 4 introduced and validated ML models for predicting dosimetric 

parameters, including spot size and relative positional errors, using log file data as input. 

While the ML models demonstrated high prediction accuracy, effectively utilising these 

models requires automated methods, such as scripting, to streamline the workflow. 

Automating data segregation from log files and applying ML models saves time and 

enhances the process's overall efficiency, enabling their meaningful application in PSQA 

and machine QA.  

This chapter focuses on developing and implementing an in-house script-based tool 

to automate log file data extraction and integrate previously developed ML models for 

predicting spot parameters. By automating the analysis of patient-specific beam irradiation 

data, this tool combines data extraction with ML-based predictions to streamline the QA 

process. Integrating ML into the QA process optimises the workflow, improving the 

precision of proton therapy. The chapter details the tool’s framework, data processing, and 

the comparison of predicted parameters with specifications, demonstrating its potential to 

streamline PSQA in PBS proton therapy. 

5.2 Materials and Methods 

This session provides an overview of the materials and methods used to develop an 

in-house automated tool for data extraction, spot parameter prediction, comprehensive data 

analysis, and reporting results for each treatment beam in the PBS proton therapy system 
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5.2.1 IBA Proteus plus multi-room system 

The IBA Proteus Plus proton therapy system installed at ACTREC, Tata Memorial 

Centre, Mumbai, utilized in this study is a multi-room setup equipped with multiple 

treatment gantries. Specifically, the system includes three treatment gantries, as illustrated 

in Figure 5.1. The cyclotron produced proton beam transfer to each gantry through the beam 

transport system. While these gantries are identical in operation, their beam characteristics 

are not beam-matched. Consequently, slight variations can occur between the gantries in 

parameters such as spot size, range, nozzle water-equivalent thickness (WET), and source-

to-detector distance. To address these differences, the development of the in-house tool 

accounted for these small variations, enabling the analysis of all irradiated beams from any 

gantry. 

Figure 5.1: The Schematic representation of the layout of the Proton therapy system 

installed at ACTREC Proton Therapy Centre, Navi Mumbai, India. GTR- Gantry. 

5.2.2 Log file data extraction 

The log files are generated and saved in a dedicated directory named "Data 

Recorder" within the IBA beam delivery system after each beam delivery. These log files 

are stored in .zip format, with a separate .zip file created for each beam. Each .zip file 

contains seven .csv files that record detailed beam delivery data. 
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The information from these log files is extracted using an in-house Python-based 

script designed to automate the data extraction process efficiently. After each beam 

delivery, the data from these log files is analysed by the script and tabulated alongside the 

planned data received from the Mosaiq OIS. The analysis involves comparing the planned 

data with the delivered data, focusing particularly on the range of each layer and key spot 

dosimetric parameters such as spot size, position, MU etc. 

A detailed description of each file is provided below: 

5.2.2.1. beam.csv:  

The file contains general information about the irradiation session (room, gantry 

angle, cyclo current, temperature, humidity, and ionization chamber configuration) 

5.2.2.2. beam_config.csv: 

 This file is a copy of the scanalgo database (configuration file of the scanning 

controller). It contains all the scanning calibration parameters as well as the safety 

tolerances. 

5.2.2.3.  beam_settings.csv:  

The file contains treatment settings and parameters (including BMS, PMS, and 

Scanalgo database). 

5.2.2.4. event.csv:  

This file has the timeline of the full irradiation, this file lists the timestamps of all 

the important steps of one field irradiation (each tuning pulse, each layer, and each set 

range) 

5.2.2.5.map_record_tuning.csv  

The Irradiation log of the initial tuning pulse. There is at least one tuning pulse at 

the beginning of every range. During the tuning pulse, the alignment of the beam is verified 

and adjusted, if necessary. This tuning pulse is done on the spot of the field that is closest 



 

109 
 

Chapter 5 

to the un-scanned location of the beam. The tuning pulse is taken into account in the total 

dose. 

5.2.2.6. map_specif.csv file:  

This file represents the TPS data, including the planned spot position, range, and 

MU for each spot within a beam. The TPS transfers treatment planning data to the Mosaiq 

OIS. The Mosaiq OIS transfers all spot-related data required by the IBA beam delivery 

system, such as the spot position in the isocentre plane, the MU per spot, and the range or 

energy of each spot. 

The IBA beam delivery system converts the data into the format required for 

delivery. Specifically, the IBA system verifies and records the size, position, and MU of 

each spot using the IC23 ionisation chamber. The system transforms the spot positions from 

the isocentre plane to the IC23 plane and calculates the beam range from the energy value. 

Based on the range, the system assigns baseline spot size values to each spot. Additionally, 

the MU values are converted into charge values to ensure the IC23 chamber halts beam 

irradiation once the prescribed MU is delivered. 

Furthermore, the IBA beam delivery system calculates the minimum and maximum 

positional values in the X and Y directions and the spot size in the IC23 plane along both 

axes. These calculations are based on tolerance values provided in Chapter 3, Table 3.2. 

All the aforementioned data is recorded in the beam specification file for each range. The 

specification file is generated for each layer. The in-house tool read this specification file 

to extract the above-mentioned data.  

5.2.2.7. map_record.csv 

This .csv file records all major dosimetric parameters for each spot. It contains 

detailed irradiation data for every spot, with a separate file generated for each range. The 

file logs data at intervals of 200 µs, creating a new row for each spot at these intervals. If a 

single spot lasts longer than 200 µs, its data will appear across multiple rows. 

The recorded data includes measurements from the nozzle head ionisation chambers 

and scanning magnets. Key parameters captured in the file include: 
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 Spot ID 

 Spot widths (X and Y) recorded in both the IC23 and IC1 ionisation chambers 

 Spot positions (X and Y) recorded in the IC23 and IC1 chambers 

 Charge collected in the primary and secondary dosimeters within the IC23 for each 

spot 

 Primary and secondary currents of the X and Y scanning magnets 

 Beam current 

 Degrader feedback 

 Gantry name  

 Layer ID 

The beam specification file serves as a reference for beam irradiation. The beam 

delivery system continuously monitors parameters such as spot position, charge, and size, 

as recorded in the IC23 chamber. These are compared with the corresponding values in the 

beam specification file. If any parameter deviates beyond the specified tolerance values, 

the system triggers a beam interruption. The irradiation file is used to extract all irradiated 

spot parameters for the analysis.   

5.2.3 Conversion of spot position in IC23 to the isocentre plane 

The spot positions recorded in IC23 must be converted back to the isocentre plane 

for direct comparison with the spot positions defined by the TPS system. This conversion 

is performed using the equivalent triangle method, as described in Figure 5.2. The 

calculation for the equivalent triangle method requires parameters such as the distance from 

the isocentre to the centre of each scanning magnet, referred to as the source-to-axis 

distance (SAD), and the distance from the IC23 plane to the centre of each scanning 

magnet. 

While the SAD values are identical for all gantries, slight variations exist in the 

distance from the IC23 plane to the scanning magnet centres. These values are summarised 

in Table 5.1. The script incorporates these differences to accurately convert the spot 

positions recorded in IC23 to the isocentre plane. 
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Table 5.1: The tabulation of different distance values for the calculation of spot position 

conversion from the IC23 plane to the isocentre. GTR- represents each gantry. 

 Distance from the isocentre to the centre of each scanning 

magnet 

Distance from 

IC23 plane to 

scanning 

magnet centre 

(same for all 

gantries) 

GTR1 (mm) GTR2 (mm) GTR3 (mm) 

X 

scanning 

magnet 

1239.9 1236.6 1241.3 1835.5 

Y 

scanning 

magnet 

1657.5 1653.7 1657.9 2214.2 

 

 

 

 

 

 

 

 

 

Figure 5.2: Equivalent triangle method. This method converts the spot positions from the 

isocentre plane to the IC23 plane.  
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5.2.4 Range calculation  

The energy value of each spot is transferred from the TPS to the Mosaiq OIS and 

subsequently to the IBA beam delivery system. The IBA delivery system converts this 

energy into a range value using Equation 3.3 provided in Chapter 3, Section 3.2.5. The 

calculated range represents the penetration depth of the proton beam in water. 

The nozzle head includes a thin copper window to protect equipment from physical 

damage. However, this protective layer causes minor attenuation of the proton beam. The 

WET of this protective sheet must be considered when calculating the range of each spot 

provided by the TPS. The IBA specification file records the range of each spot by 

subtracting the WET of the nozzle entrance window. 

To determine the actual range or energy recorded in the specification file, the WET 

of the entrance window must be added back to the range recorded in the file. The WET of 

the nozzle entrance window is energy-dependent and is calculated using a third-order 

polynomial equation. Since the thickness of the entrance window varies slightly between 

the three gantries, the coefficients of the polynomial equation differ for each gantry. The 

specific coefficients are provided below. 

𝑊𝐸𝑇 (𝑁𝑜𝑧𝑧𝑙𝑒 𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 )𝑖𝑛 𝑚𝑚 = 𝑎𝑅3 + 𝑏𝑅2 + 𝑐𝑅 + 𝑑                                      (5.1) 

Where R is the range of the spot at the nozzle entrance. 

The Coefficients for different gantries are tabulated in table 5.2.  

Table 5.2: The coefficients of equation 5.1 for different gantries. GTR- Gantry. 

Coefficients a b c d 

GTR1 -1.7E-05 7.5E-04 -4.7E-03 1.8E-01 

GTR2 -8.0E-06 3.5E-04 -7.2E-04 1.9E-01 

GTR3 -8.0E-06 3.5E-04 -7.2E-04 1.5E-01 

The in-house script uses this information to calculate the range of each spot 

delivered and recorded in the log file, which is then compared with the range specified by 

the TPS. 
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5.2.5 Spot size calculation 

The spot size for each range or energy has a baseline value that remains consistent 

across all gantry angles for a specific energy. This baseline spot size is inherently linked to 

the range, with the spot size typically decreasing as the range increases. In the log file 

analysis, ML models are employed to predict the spot size in both the X and Y axes for all 

spots irradiated in the beam. These predictions are based on the irradiation data captured in 

the log files. However, to make meaningful comparisons between the predicted spot sizes 

and the actual measurements, a baseline spot size value is required. This baseline value, 

representing the expected spot size for a given energy or range, is calculated using an 

analytical equation 5.2. The equation accounts for the relationship between the energy or 

range and the corresponding spot size, providing a reference for comparison with the ML 

model's predicted values. The equation for calculating the baseline spot size is given below 

𝑆𝑝𝑜𝑡 𝑠𝑖𝑧𝑒(𝑚𝑚) = 𝑎𝐸4 + 𝑏 𝐸3 + 𝑐𝐸2  + 𝑑𝐸 + 𝑒                                            (5.2) 

E-Energy in MeV and the coefficients are, a = 5.47E-09, b = -4.03E-06, c = 0.001172, d= 

-0.1715, and e= 14.03009. 

The in-house script calculates the baseline spot size for each spot specified in the 

specification file using the provided equation and the corresponding spot's range 

information. It then compares these baseline spot size values with the spot sizes predicted 

by the ML model. 

5.3 Results 

5.3.1 Nozzle WET calculation 

The script utilises Equation 5.1 to calculate the nozzle WET and determine the 

range of each spot during log file analysis. As shown in Table 5.3, the calculated nozzle 

WET values for five selected energies are presented for all three gantries. The log file 

records the machine name, which is used to identify the machine and apply the 

corresponding coefficients tabulated in Table 5.2 for nozzle WET calculation in the script. 

As presented in Table 5.3, the maximum calculated WET value of the nozzle 

entrance window is 0.27 mm for an energy of 200 MeV. This finding highlights the 
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importance of correcting the range values recorded in the log file using the nozzle WET 

value. Such corrections are critical for accurately determining the actual range of each spot, 

especially when comparing these values with TPS data. The TPS computes the beam range 

in water as it passes through the nozzle head. To ensure consistency in this comparison, the 

beam range derived from TPS energy data is matched against the nozzle WET-corrected 

range recorded in the log file. This correction involves subtracting the nozzle WET value 

from the range recorded in the log file, ensuring an accurate depiction of the actual range 

for each spot. 

Table 5.3: Provided the calculated nozzle WET values for different energies for all three 

gantries.  

Energy (MeV) Range (𝑔/𝑐𝑚2) Calculated Nozzle WET values  

GTR1(mm) GTR2 (mm) GTR3 (mm) 

70.18 4.1 0.17 0.19 0.15 

100 7.72 0.18 0.20 0.16 

150 15.78 0.23 0.23 0.19 

200 25.4 0.27 0.27 0.22 

226.2 32.02 0.24 0.26 0.22 

5.3.2 The Automated script workflow 

The in-house script automates the analysis of spot dosimetric parameters for an 

irradiated beam using log file data and ML models. The irradiation log files, along with the 

specification files, are processed by the script, which converts the data into meaningful spot 

dosimetric parameters, as described in the methods section. The script tabulates the 

converted spot position and MU values for each spot from the irradiation file. Additionally, 

it creates a table of input data for the ML models to predict spot size information. 

Each ML model is executed, and the predicted spot size values are tabulated 

alongside the baseline spot size values. The script compares the predicted values with the 

TPS-specified data and the irradiation data to assess the accuracy of the spot dosimetric 

parameters. The predicted spot size values along the Major and Minor axis are used to 

calculate the spot symmetry using the equation provided below. 

𝑠𝑝𝑜𝑡 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 =
(𝑆𝑝𝑜𝑡 𝑠𝑖𝑧𝑒 𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠−𝑠𝑝𝑜𝑡 𝑠𝑖𝑧𝑒 𝑎𝑙𝑜𝑛𝑔 𝑀𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠)

(𝑆𝑝𝑜𝑡 𝑠𝑖𝑧𝑒  𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠+𝑆𝑝𝑜𝑡 𝑠𝑖𝑧𝑒 𝑎𝑙𝑜𝑛𝑔 𝑀𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠)
   x100         (5.3) 
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This approach can be used to automates the analysis of spot dosimetric parameters 

for thousands of spots in each irradiated beam of a patient-specific treatment plan. The 

workflow of the in-house tool is shown in Figure 5.3. 

Figure 5.3: The Illustration of the steps involved in the log file analysis using the In-house 

automated tool.  

5.3.3 Report generation 

The in-house script generates a comprehensive final report based on the data 

analysis. This report includes key details such as the total number of layers, the spots in 

each layer, the MU of each layer, the total MU of the beam, and the percentage of spots 

with variations in spot size, position, symmetry, and MU. Specifically, the report highlights 

the percentage of spots with a variation of less than 10 %, spot position variation within 1 

mm, spot symmetry below 10 %, and MU variation of less than 2 %. 

A sample report is illustrated in Tables 5.4, 5.5, and 5.6. These tables represent the 

output format produced by the in-house script after analysing the irradiated beam's log file 

data. All the values shown in these tables are based on the sample data extracted and 

processed by the script. 
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Table 5.4: Sample data table illustrating the total number of spots, layers, and MU. This 

table represents the format generated by the in-house script when processing the irradiated 

log file data of a beam. * All values are sample values only.  

Parameters Value *  

QA plan name XXXXXX 

Beam Name XXXXX 

Total number of layers in Plan 22 

Total number of layers irradiated 22 

Total number of spots in Plan 1107 

Total number of spots irradiated 1104 

Difference in number of layers 0 

The difference in the total number of spots 3 

Total MU (TPS) 263.98 

Total MU (Irradiated) 263.49 

Difference in delivered MU -0.49 

 

Table 5.5: Sample format of the table displaying spot information for each layer. This table 

represents the structure generated by the in-house script when processing the log file data 

for a patient’s treatment beam. * All values are sample values only.  

Range 

(cm) * 

Energy 

(MeV) * 

No. of 

Spots. * 

MU/Layer * Number of spots 

Irradiated per layer * 

Irradiated 

MU/Layer * 

11.36 124.41 12 5.93 12 5.92 

10.98 122.01 18 6.63 18 6.61 

….. ….. ….. ….. ….. ….. 

….. ….. ….. ….. ….. ….. 

….. ….. ….. ….. ….. ….. 

4.93 77.81 13 2.5 12 2.49 

 

Table 5.6: Sample table displaying the results of spot parameter analysis, including the 

percentage of spots in the beam with spot size differences of less than 10 %, spot symmetry 

of less than 10 %, spot position errors within 1 mm, and MU per spot variation of less than 

2 %. * All values are sample values only. 

Parameters Sample Value (%)* 

Spots with X spot size variation within 10 % 90.3 

Spots with Y spot size variation within 10 % 93.1 

Spots with 2D symmetry less than 10 % 93.5 
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Spots with X position variation within 1 mm 92.0 

Spots with Y position variation within 1 mm 95.0 

Spots with MU variation within 2 % 98 

 

All the above tables represent sample data produced as an output of the in-house 

script after analyzing the irradiation log file data.  

5.4 Discussion 

The PBS proton therapy treatment involves thousands of spots per beam, making it 

impractical and cumbersome to measure and analyse the dosimetric parameters for each 

spot individually. Ideally, if all the spots in a treatment beam meet the tolerance criteria and 

all dosimetric parameters are within specified limits, the beam irradiation would be 

considered accurate and complete. However, measuring these parameters for every spot 

using a dedicated dosimeter is practically impossible, requiring significant beam-on time 

and manpower. Consequently, the conventional approach for PSQA involves measuring 

dose planes at various depths and performing gamma analysis [9]. While this method 

provides a convenient tool for PSQA, it often struggles with the complexity of highly 

modulated dose distributions in intensity-modulated proton therapy, frequently failing to 

detect clinically significant discrepancies. Moreover, this process requires substantial setup 

time and consumes valuable clinical treatment time [10].  

The need for a fast and reliable tool for PSQA in proton therapy has driven the 

development of MC-based PSQA systems that utilize log files as input parameters [3, 4, 

5]. This approach reduces the reliance on dedicated dosimeter measurements and 

minimizes beam-on time, though it necessitates a GPU-based system for rapid dose 

calculation. Additionally, gamma analysis is employed for dose evaluation. A study by 

Ates et al. [8], which analyzed six years of patient data, demonstrated that log file analysis 

can serve as a valuable tool for machine performance evaluation. However, the 

uncertainties associated with log file data must be carefully considered before it can be 

adopted as a comprehensive analysis tool in proton therapy. 

This chapter discusses the development of an in-house tool designed to analyse the 

dosimetric accuracy of all spots within a treatment beam using log files and ML models. 

The implementation of this automated, script-based tool represents a substantial 
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advancement in QA processes for PBS proton therapy systems. By addressing challenges 

related to non-beam-matched gantries in the IBA Proteus Plus system—such as variations 

in spot size, range, and source-to-detector distances—this tool integrates system-specific 

configurations to enhance its applicability. 

The automated extraction of key parameters, including spot size, position, and MU, 

facilitates efficient and precise analysis, significantly reducing the time required compared 

to manual methods. This streamlined approach supports proactive identification and 

correction of discrepancies, ensuring compliance with QA standards, such as AAPM-

TG224 [11]. The integration of ML models further enhances the tool's capability to 

optimise dosimetric accuracy, thereby strengthening its role in modern QA frameworks for 

proton therapy.  

5.5 Conclusions 

In conclusion, this chapter summarises the development of the in-house automated 

tool that integrates log file data and ML models, marking a significant advancement in 

ensuring the accuracy and efficiency of proton therapy beam delivery. This tool enables 

quick and comprehensive analysis of PSQA beams, allowing for the prompt identification 

of discrepancies and ensuring adherence to QA standards. By improving the precision of 

beam delivery evaluation, the methodology has the potential to streamline PSQA and 

machine QA processes, ultimately contributing to enhanced patient outcomes.  

Chapter 6 will provide a detailed exploration of the application of this in-house tool 

for PSQA and machine QA, focusing on its role in validating the beam delivery accuracy 

of the IBA Proteus Plus system. 
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Chapter 6 

Title: Application of the In-House Automated Tool for Patient-Specific and Machine 

Quality Assurance in Proton Beam Therapy Using Log Files and Machine Learning 

Models. 

6.1 Introduction 

Achieving precise treatment delivery, as outlined by the TPS, is essential for 

optimal clinical outcomes in radiotherapy [1]. In PBS proton therapy, proton spots are 

delivered dynamically with varying energies and positions to construct the planned dose 

distribution layer by layer. Robust QA protocols are crucial to ensure that the machine 

delivers treatments as intended, verifying parameters against the treatment plan and 

addressing errors before they affect patient outcomes. The precision required in PBS, 

involving thousands of spots, makes meticulous QA a cornerstone of effective and safe 

proton therapy. [2]. The AAPM-TG-224 report [3] highlights the necessity of routine 

verification of beam parameters and PSQA. Spot profiles, which play a pivotal role in 

determining dose distribution accuracy, depend on the beam optics, which are meticulously 

optimised during machine installation and commissioning [4]. Although the baseline spot 

size for each energy is designed to remain consistent across all gantry angles, minor 

variations can arise due to adjustments in beam optics for specific energy and angle 

combinations. Consequently, routine QA protocols are designed to evaluate spot size, 

position, and symmetry for selected energies and angles. 

In clinical scenarios, treatment fields comprise thousands of proton spots with 

varying energies, closely arranged to ensure uniform dose coverage and adequate 

distribution to the target. Conventional QA equipment lacks the capability to directly verify 

the dosimetric accuracy of every individual spot within a treatment field. As a result, 

standard PSQA procedures rely on array detectors to measure dose fluence at fixed gantry 

angles, with the evaluation commonly performed through gamma analysis [5]. However, 

this method is labour-intensive, limited to specific gantry angles, consumes significant 

beam-on time, and may not reliably represent the dosimetric accuracy at the actual 

treatment angle during patient delivery [6,7]. 

Given these challenges, many centres have transitioned to MC methods to enhance 

PSQA by leveraging data from irradiation log files [8–10]. MC algorithms extract essential 

spot data, including positions and MU values, from these log files to calculate the delivered 
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dose. Numerous studies have investigated the accuracy of the spot position and MU data 

recorded in log files [11–13]. For instance, Noufal et al. [14] demonstrated that random 

errors in spot positions could significantly impact dose delivery, potentially affecting both 

target coverage and sparing of normal tissues. Furthermore, variations in spot size can 

introduce in homogeneities in dose distribution, leading to suboptimal treatment outcomes 

[15]. In PBS proton therapy, inconsistencies in beam transport and extraction systems can 

result in delivered spot sizes deviating from their planned values, risking underdoing of the 

target or overdosing of nearby critical structures [16–19]. 

While MC and log file-based PSQA methods are effective for verifying specific 

beam parameters, they do not address variations in the delivered spot sizes. Typically, spot 

size data recorded in log files are derived using Gaussian fitting of signals from strip 

ionisation chambers. However, these recorded values frequently show poor correlation with 

the actual spot sizes measured using high-resolution scintillators. These inconsistencies 

complicate the direct analysis of spot size data from log files, underscoring the necessity 

for more advanced methodologies to ensure accurate dosimetric evaluation and improve 

treatment precision. 

The ML has emerged as a transformative technology in radiation therapy, with an 

increasing number of studies exploring its potential for predicting dosimetric parameters 

and automating QA processes [20–23]. Several investigations have successfully employed 

ML models to predict spot positions and MU values using irradiation log files as input data 

[24,25]. However, ensuring accurate PBS treatments requires a more comprehensive 

evaluation of all spot parameters, including spot size, symmetry, position, and MU for each 

spot in a treatment field. Despite progress in ML applications, a fully integrated ML-based 

approach that systematically assesses all these parameters for every individual spot within 

a treatment field is still lacking. 

In Chapter 3, a comprehensive analysis was conducted to compare the spot 

parameters recorded in log files with those measured using a high-resolution scintillator 

detector. The findings revealed a linear correlation between the log file data and scintillator 

measurements. However, the accuracy of the log file data remains questionable for direct 

use in machine performance evaluation or machine QA, as inherent data limitations affect 

its reliability. Chapter 4 focused on developing ML models to predict spot dosimetric 
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parameters using log file data as input. These ML models demonstrated high predictive 

accuracy, effectively addressing discrepancies in log file data and serving as a robust tool 

for machine QA.  

Chapter 5 combined the capabilities of the ML models and log file data analysis 

into an in-house automated tool. This tool was designed using scripts to facilitate 

comprehensive log file evaluation. It enabled the extraction of significant data from log 

files, segregation of input parameters for the ML models, automated prediction of spot 

parameters, generation of beam-specific reports, and analysis of all spot dosimetric 

parameters. 

This chapter summarises the application of the in-house tool for evaluating beam 

delivery accuracy using routine QA beams and PSQA beams. Log file data from multiple 

beams, recorded during the PSQA procedures were collected and analysed using an in-

house automated tool. The results demonstrated that this method could serve as a potential 

solution for machine QA, PSQA and the performance evaluation of the IBA Proteus Plus 

proton therapy system. The tool offers a time-efficient and resource-effective alternative to 

conventional PSQA methods by enabling the analysis of all spot parameters in treatment 

beams without requiring dedicated dosimeters. This approach not only reduces beam-on 

time and manpower but also eliminates the complexities associated with traditional PSQA 

procedures. 

6.2 Materials and Methods 

6.2.1 Data collection 

The performance of the in-house tool was evaluated using routine machine QA data. 

It was also employed to analyse the accuracy of PSQA beams by processing irradiated log 

file data collected post-irradiation. 

The routine QA analysis of the IBA Proteus Plus PBS machine focused on spot 

dosimetric parameter accuracy using a 5-spot pattern across 30 different energy levels, with 

a range interval of 1 gm/cm². The energy range varied from 70.18 MeV (corresponding to 

a range of 4.1 gm/cm²) to 226.2 MeV (corresponding to 32.0 gm/cm²). These QA 

measurements were conducted using a Lynx2D scintillator detector. For each energy level, 
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the same 5-spot pattern was measured at 12 different gantry angles with gantry angle 

intervals of 300. The IBA Proteus Plus machine is equipped with three gantries, and QA 

was performed on all three to ensure spot accuracy. Data from all three gantries were 

collected over three months from August 2023 to October 2023, resulting in a total of 1080 

spot patterns and a total of 5400 spots and their corresponding log file data for subsequent 

analysis using the in-house tool. 

For the PSQA beams, log file data were collected from PSQA procedures conducted 

before actual patient treatments. During PSQA, each treatment plan typically consisting of 

2 to 5 beams are recalculated in a virtual water phantom within the TPS and delivered to 

an actual water phantom. Dose measurements at various depths are acquired using a 

dedicated matrix ionisation chamber array detector. Log files corresponding to these beams 

were recorded during the PSQA water phantom measurements, capturing detailed 

irradiation parameters. Over a period of 10 months, from August 2023 to May 2024, a total 

of 935 beam log files were gathered and subsequently analysed using an in-house 

automated tool. Each beam contains thousands of spots, and in total, approximately 3 

million spots were analysed using the in-house tool, providing a comprehensive dataset for 

evaluating beam delivery accuracy and ensuring the reliability of the treatment process. 

The ethical clearance (DYPMCK/11/2022/IEC) obtained before taking data.  Table 6.1 

summarizes the statistical data from the 935 PSQA beams analysed in this study. Key 

parameters include the number of layers per beam, the energy span, the MU per spot, and 

the spot position range. This statistical overview provides insights into the characteristics 

of the treatment beams, offering a comprehensive understanding of the data.  

Table 6.1: Summary statistics of beam parameters analyzed in this study. The number of 

layers, Energy range, spot size range, spot position in X and Y directions and MU per spot. 

Beam 

parameters 

mean Standard 

Deviation 

Minimu

m 

1st 

Quartil

e 

(25%) 

2nd 

Quartil

e 

(50%) 

3rd 

Quartil

e 

(75%) 

Maximu

m 

Number of 

layers 

14.10 7.66 1.00 8.00 13.00 19.00 50.00 

Energy (MeV) 140.8

1 

28.70 75.41 119.01 140.82 163.72 203.24 

Spot size (mm) 4.13 0.65 3.08 3.60 4.02 4.53 6.20 
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Spot position 

at Isocentre - X 

direction(mm) 

-1.17 38.81 -132.46 -27.36 -0.34 25.77 111.67 

Spot position 

at Isocentre - Y 

direction (mm) 

2.19 35.93 -121.06 -21.46 2.64 27.34 86.14 

MU per spot 0.11 0.12 0.01 0.04 0.06 0.13 2.71 

6.2.2 Data Processing 

All the machine QA log file data and PSQA beam log file data were retrieved from 

the data recorder folder of the IBA beam delivery system after beam irradiation. The 

recorded log files were unzipped and processed using the in-house tool described in Section 

5.3.2 of Chapter 5. This tool enabled the reading and extraction of relevant data, applied 

ML models to predict spot dosimetric parameters, and generated comprehensive reports 

summarising the analysis results. 

For machine QA, the predicted spot size values in the X and Y directions and the 

spot position accuracy of each spot were assessed by comparing log file recorded data with 

both measured data and ML model predictions. For patient treatment beam data analysis, 

the in-house tool generated a report for each beam, which was segregated and evaluated to 

determine the percentage of spots within each gantry angle interval meeting accuracy 

criteria for spot position, size, symmetry, and MU. The extracted data was compared with 

the TPS-specified values. A box and whiskers plot was used to visualise the results. Spots 

with spot size variation less than 10 %, position differences within 1 mm, symmetry within 

10 %, and MU differences within 2 % were evaluated based on the tolerances specified by 

AAPM TG224. 

6.3 Results 

6.3.1 Machine QA data 

The log files of monthly QA data of all three gantries were analyzed using the in-

house tool and compared the predicted spot size values and extracted spot position values 

with the Lynx 2D measured data. The results are tabulated in Table 6.2.  
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The log file extracted spot positions are closely matching with the measured spot 

positions and the spot size values predicted by the ML models are closely matching with 

the measured spot size values.  

Table 6.2: Comparison of spot parameters using the 5-spot pattern for machine QA: 

measured, predicted, and log file-recorded spot sizes (X and Y axes) along with measured 

versus log file-recorded spot positions. Mean and standard deviation values across 12 

gantry angles are presented. 

 Spot Size Comparison (Measured vs Log File 

Recorded vs ML Model Predicted) 
 

The difference in Spot 

position(mm) 
 Percentage Difference 

in X spot size (%) 

Percentage Difference 

in Y spot size (%) 

 

 

 

Gantry 

angle 

(Degre) 

 

 

(Measured 

vs. Log 

File) - 

Mean 

(SD) % 

 

 

(Measured 

vs. 

Predicted) 

– Mean 

(SD)% 

 

(Measured 

vs. Log 

File) - 

Mean (SD) 

% 

 

 

(Measured 

vs. 

Predicted) 

- Mean 

(SD) % 

 

Spot 

Position in 

the X axis 

(Measured 

vs. Log 

file) – 

Mean 

(±SD)  

 

Spot 

Position 

in the Y 

axis 

(Measured 

vs. Log 

file) – 

Mean 

(±SD)  

 
0 1.16 (7.84) 0.08 (1.17) 2.00 (6.24) 0.81 (1.05) 0.37(0.33) 0.37(0.38) 

30 1.09 (7.21) 0.27 (1.15) 0.74 (7.08) 1.24 (1.01) 0.38(0.33) 0.38(0.39) 

60 0.81 (7.82) 0.32 (1.02) 0.83 (6.23) 0.97 (1.03) 0.37(0.32) 0.38(0.39) 

90 1.76 (7.44) 0.11 (1.04) 3.02 (6.58) 0.58 (1.13) 0.38(0.32) 0.38(0.39) 

120 2.07 (7.45) 0.12 (0.97) 2.66 (6.57) 0.82 (0.91) 0.37(0.32) 0.37(0.37) 

150 0.98 (8.26) 0.57 (1.61) 1.11 (7.27) 1.05 (1.12) 0.40(0.31) 0.40(0.37) 

180 1.09 (8.61) 0.41 (1.37) 2.26 (6.25) 1.19 (1.19) 0.39(0.31) 0.39(0.37) 

210 2.21 (7.59) 0.25 (1.33) 4.01 (6.47) 0.57 (1.58) 0.47(0.28) 0.43(0.33) 

240 2.16 (7.63) 0.45 (1.07) 3.67 (7.32) 0.77 (1.39) 0.37(0.31) 0.38(0.36) 

270 3.63 (7.66) 0.17 (1.57) 1.08 (7.47) 1.11 (1.36) 0.44(0.28) 0.44(0.35) 

300 1.12 (7.71) 0.59 (1.07) 0.97 (7.26) 1.21 (1.19) 0.38(0.33) 0.38(0.39) 

330 3.67 (8.06) 0.72 (1.18) 0.69 (6.98) 1.00 (0.96) 0.37(0.32) 0.37(0.37) 
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The analysis demonstrated a high level of agreement between the measured and 

recorded spot positions. On average, the difference between the measured and log file-

recorded positions across all gantry angles was under 0.5 mm, with a standard deviation 

below 0.4 mm for both the X and Y axes. This indicates that the spot positions documented 

in the log file align closely with the measured values, confirming an accuracy of within 0.5 

mm for the log file spot positions.  

The spot size values comparison is also tabulated in Table 6.2. This analysis 

highlights the percentage differences between the measured and log file-recorded spot sizes 

and those between the measured and ML model-predicted spot sizes for both X and Y 

directions. The measured and log file-recorded spot sizes exhibited notable discrepancies, 

with mean differences ranging from 0.7 % to 4.0 % and standard deviations between 6.3 % 

and 8.6 % across all gantry angles. In contrast, the comparison between measured and 

predicted spot sizes showed much closer alignment, with mean differences between 0.5 % 

and 1.25 % and standard deviations from 0.9 % to 1.6 %. These findings demonstrate a 

stronger agreement between measured and predicted spot sizes, whereas the measured and 

log file-recorded spot sizes displayed greater variability. Additionally, the calculated spot 

symmetry for all spots, based on the predicted major and minor axis spot sizes, was below 

10 %. When compared to the measured spot symmetry, the difference was less than 1 %, 

confirming the high accuracy of the predicted symmetry values. Also, the MU per spot for 

each 5-spot pattern was compared to the values recorded in the log file, revealing that all 

differences were within 1 % of the specified MU per spot values. 

Figure 6.1 presents a plot of Lynx2D-measured spot sizes versus ML model-

predicted and log file-recorded spot sizes for the X-direction. The comparison reveals a 

strong correlation between the measured and predicted spot sizes, while the log file-

recorded values show more noticeable deviations from the measured data. Figure 6.2, on 

the other hand, illustrates the same comparison for the Y-direction spot sizes. Like in Figure 

6.1, the plot shows that the ML model-predicted values align closely with the measured 

spot sizes, whereas the log file-recorded values exhibit greater discrepancies. These figures 

provide a clear visual representation of the accuracy of the ML models and highlight the 

variation observed in the log file-recorded spot sizes, underscoring the effectiveness of the 

ML models in accurately predicting spot size values. 
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Figure 6.1: The plot of measured spot sizes versus ML model predicted (Blue) and Log file 

(Red) recorded X spot size. 

Figure 6.2: The plot of measured spot sizes versus ML model predicted (Blue) and Log file 

recorded (Red) Y spot size. 
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6.3.2 PSQA Beam Data Analysis 

6.3.2.1 Spot position 

The study compared 935 PSQA beam data using the automated script. The X and 

Y spot positional differences versus different gantry angle intervals are plotted in Figures 

6.3 and 6.4, respectively, using box-and-whisker plots. 

The comparison indicates that 99.5 % of spot positions are within a 1 mm margin 

in the X and Y directions. For the 600-900 gantry angle interval, a few spots showed a Y 

positional error of more than 1 mm. Over 95 % of spots demonstrate position accuracy 

within 0.5 mm. The mean and standard deviation of X positional error were -0.021 mm and 

0.181 mm, respectively, and for Y positional error, the mean and standard deviations were 

-0.002 mm and 0.132 mm, respectively. These findings highlight the machine's excellent 

and consistent performance in spot position accuracy across varying gantry angles. It aligns 

well with the AAM-TG 224 recommended tolerance of 1mm for spot position accuracy.  

 

Figure 6.3: Box plots show the X positional error in different gantry angle intervals. 
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Figure 6.4: Box plots showing Y positional error in different gantry angle intervals. 

6.3.2.2 Spot size and symmetry 

The spot size for each spot in the 935 PSQA beam dataset was predicted using log 

file data as input to the ML models. The prediction covered spot sizes along different 

directions, including the X, Y, major, and minor axis directions for each spot in the 

irradiated beam. These predicted spot sizes were then compared to the baseline spot size 

for each energy. 

To assess the accuracy of the predictions, the percentage of spots with spot size 

variations less than 10 % from the baseline was calculated for each beam. Figures 6.5 and 

6.6 present box plots illustrating the percentage of spots in which the spot size differences 

in the X and Y directions were within 10 % across different gantry intervals, respectively. 

In the X-direction (Figure 6.5), spot size variation remained within 10 % for over 92 % of 

spots in all gantry intervals, except in the 1500-1800 range. Similarly, Figure 6.6 

demonstrates that more than 95 % of spots in each gantry angle interval showed a Y-

direction spot size variation of less than 10 %, except the 2700-3000 gantry interval. 

The RMSE values for the X and Y spot sizes were 0.15 mm and 0.16 mm, 

respectively. These results indicate that the predicted spot sizes for each pencil beam at all 
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gantry angles remain within acceptable limits, confirming the accuracy and reliability of 

the ML models in predicting spot size variations across different beam angles. 

Figure 6.5: The box plot of the percentage of spots in each gantry angle interval has an X 

spot size variation of less than 10 % from the baseline values.  

Figure 6.6: The box plot shows the percentage of spots in each gantry angle interval with a 

Y spot size variation of less than 10 % from the baseline values. 
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The number of spots in different energy intervals was also assessed. Figure 6.7 

displays a histogram of spots across various energy intervals. The majority of spots are 

belonging to the 130-160 MeV energy range. For each energy interval, the percentage of 

spots with a spot size variation of less than 10 % and greater than 10 % is plotted. The 

middle energy intervals, particularly between 130 and 160 MeV, exhibit a higher 

proportion of spots with spot size variations exceeding 10 %. In contrast, for all other 

energy intervals, less than 10 % of spots show spot size variations greater than 10 % for 

both the X and Y directions. 

Figure 6.7: Histogram of the number of spots in each energy interval, with each bar divided 

into the percentage of spots with spot size variation less than 10 % and those with spot size 

variation greater than 10 % of baseline spot size. 

Focusing solely on spot size in the X and Y directions may provide limited insight 

into the elliptical nature of the spot. Therefore, assessing spot symmetry along the major 

and minor axes is an essential part of routine quality checks. In this study, the symmetry of 

all spots irradiated in the beam was calculated using the predicted spot sizes along the major 

and minor axes. The tolerance for spot symmetry is 10 %, as specified by TG 224. 

The results showed that all spots across the beams exhibited spot symmetry within 

the 10 % tolerance. The highest observed spot symmetry deviation was 9.8 % for the 100 

MeV beam at a gantry angle of 300, indicating that the spots met the required quality 

standards for symmetry in proton therapy. 
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6.3.2.3 Monitor unit accuracy 

In the Proteus plus PBS system's clinical settings, the minimum and maximum 

deliverable MU are 0.02 MU and 12 MU, respectively. The study analysed data from 3 

million spots across 935 PSQA beams. The MU per spot ranged from a minimum of 0.02 

MU to a maximum of 2.71 MU. 

The in-house script was employed to extract the charge collected by the nozzle 

ionization chamber, correcting it for temperature and pressure, to calculate the MU for each 

spot. These calculated MU values were compared with the TPS-specified MU values. 

Figure 6.8 presents a box plot showing the percentage of spots in each gantry angle interval 

with an MU variation of less than 2 % between the delivered and TPS-specified MU values. 

In all gantry intervals, over 95 % of the spots had an MU variation of less than 2 %, except 

for the 120-150° gantry interval. 

The mean MU difference was found to be zero, with a standard deviation of 0.009 

MU. Additionally, the MU variation for all evaluated spots was less than 0.1 MU. Figure 

6.9 illustrates a scatter plot of the total MU difference for each beam, with the total MU per 

beam ranging from 35.31 MU to 768.3 MU. The maximum difference between the 

delivered and prescribed beam MU was under 3.5 MU, representing less than 0.5 % of the 

total MU for each beam. These results indicate a high level of precision in the MU delivery 

process within the PBS system. 
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Figure 6.8: The box plot shows the percentage of spots in each gantry angle interval with a 

Monitor Unit (MU) difference of less than 2 %. 

Figure 6.9: Scatter plot Showing the difference of Monitor Unit (MU) between planned and 

delivered beams.  

6.4 Discussion 

At our institute, the standard approach for evaluating beam delivery accuracy 

involves conducting PSQA prior to the first fraction of treatment. This process includes 

measuring dose fluence and performing gamma analysis using a 2D array detector. 

Additionally, for spot dosimetric parameter evaluation, conducted 5-spot pattern 

measurements at different energy levels and gantry angles using the Lynx2D scintillator 

detector. These methods ensure accurate assessment of the beam's dosimetric parameters; 

however, they are time-consuming and require dedicated equipment, specialised 

dosimeters, and software for data measurement and analysis.  

The current study, however, proposes a more time-efficient and streamlined 

alternative for analysing beam delivery parameters, utilizing in-house developed scripts 

and ML models. By leveraging irradiation log files, can accurately predict key dosimetric 

parameters such as MU, spot size, symmetry, and position, without the need for direct 
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measurements or specialized dosimeters. This approach simplifies the analysis process 

while maintaining high accuracy, offering a more practical solution for routine QA in 

proton therapy. 

In PBS, key parameters like MU, spot size, symmetry, and position play a crucial 

role in determining the accuracy of dose delivery. The study analysis focused on comparing 

the TPS-calculated MU per spot with the corresponding values recorded in the irradiation 

log files. The comparison revealed a mean difference of zero and a standard deviation of 

0.009 MU, which indicates excellent agreement between the delivered and specified MUs. 

Furthermore, more than 95 % of the spots exhibited an MU variation of less than 2 %, 

reflecting the high precision of the PBS system. 

The study also evaluated the positional accuracy of spots in both the X and Y 

directions by comparing the log file-recorded positions with those specified by the TPS. 

Over 95 % of spots showed positional differences of less than 0.5 mm, with the standard 

deviations of the X and Y spot position errors being 0.181 mm and 0.132 mm, respectively. 

These results confirm that the spot positional errors are well within the 1 mm tolerance 

limit set by TG224, ensuring accurate delivery of radiation to the targeted area. 

The findings are consistent with those reported by Maes D et al. [24], who observed 

similar spot position accuracy, with standard deviations of 0.39 mm and 0.44 mm for the 

X and Y directions, respectively. This agreement further validates the robustness of in-

house analysis method and its potential for routine use in proton therapy quality assurance. 

The adoption of this log file-based approach, powered by ML models, not only enhances 

the efficiency of spot parameter evaluation but also maintains the high standards required 

for clinical practice. 

Toscano et al. [11] assessed the spot positional accuracy on the IBA Proteus Plus 

machine using standardized spot patterns, and their findings indicated a spot positional 

error of less than 0.6 mm in both the X and Y directions. This aligns with the results from 

Li et al. [13] and Ates O et al. [12], who evaluated spot position errors in proton therapy 

systems using log file data from the Hitachi PROBEAT machine (Hitachi, Ltd, Tokyo, 

Japan). Li et al. [13] analysed the log file data from 14 patients and reported standard 

deviations of 0.26 mm for the X positional error and 0.42 mm for the Y positional error. 
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Their study also demonstrated that the total MU accuracy remained within 0.1 % of the 

TPS-specified MU values. 

Ates O et al. [12] conducted an evaluation with data from 992 patients, finding 

standard deviations of 0.125 mm and 0.175 mm for the X and Y spot positions, respectively. 

Furthermore, the standard deviation in the MU difference was found to be less than 0.001 

MU, indicating excellent agreement between the log file and TPS values for MU. In another 

study, Arjunan M et al. [26] highlighted that random spot positional errors in treatment 

plans can lead to significant dose variation, especially in small-sized tumours, compared to 

plans involving larger target volumes. This emphasizes the importance of precise spot 

positioning in achieving accurate dose delivery, particularly for smaller and more sensitive 

targets. 

Many studies, including those mentioned above, have utilized log file-recorded spot 

positions and MUs for MC-based PSQA calculations. These studies provide valuable 

insights into the effectiveness of log file data for evaluating and ensuring the accuracy of 

proton therapy treatments, reinforcing the role of log files in modern QA practices. 

The results of the current study, when compared to existing literature, confirm that 

the spot positions and MU values recorded in the irradiation log files of the IBA Proteus 

Plus machine show strong agreement with the TPS-specified values. The analysis revealed 

that most spot positions were within a 1 mm tolerance; however, the log file’s beam 

interruption threshold is set to 3 mm, which is higher than the 1 mm tolerance 

recommended by TG224. This means that the system will not interrupt the beam unless 

spot position deviations exceed 3 mm. Consequently, the proposed method, which employs 

in-house scripts to verify each spot position individually against the 1 mm tolerance, plays 

a crucial role in ensuring the accuracy and performance of PBS systems. The findings 

underscore that log file data is a highly effective tool for assessing the accuracy of both 

spot positions and MU values in treatment fields. 

In addition to assessing spot position and MU, it is essential to evaluate the accuracy 

of spot size and symmetry to ensure proper beam delivery. In Chapter 3, it was noted a 

weak correlation between the spot size recorded in the log file and the spot size measured 

with a scintillator detector. The comparison between measured and log file recorded spot 

sizes showed notable variation, with standard deviations ranging from 6.3 % to 8.6 %. 
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Possible reasons for this discrepancy include differences in measurement conditions and 

resolution. Routine QA measurements for spot size are taken at the isocentre plane using a 

2D scintillator detector with a resolution of 0.5 mm. In contrast, the log file records the spot 

size at the IC23 level using a strip chamber with a resolution of 5 mm and employs a 

Gaussian fit to estimate the spot size. Furthermore, the log file does not capture the spot 

size along the major and minor axes. The lower resolution of the IC23 strip chamber 

introduces errors in the spot size measurements. Therefore, the spot size recorded in the log 

file may not accurately reflect the true spot size for each spot, and it cannot be relied upon 

for evaluating spot size accuracy. 

An alternative approach for predicting spot size using ML models with log file data 

as input parameters was investigated in chapter 4. The accuracy of these models was 

evaluated, resulting in RMSE values of 0.053 mm, 0.049 mm, 0.053 mm, and 0.052 mm 

for the X, Y, major, and minor axis spot sizes, respectively. In this chapter, these ML 

models were applied to predict the spot sizes for all spots in 935 treatment beams. The 

analysis revealed that over 95 % of X and Y spot size values were within 10 % of the 

baseline values across all gantry angle intervals. The RMSE for X and Y spot sizes was 

determined to be 0.15 mm and 0.16 mm, respectively. Additionally, when evaluating the 

5-spot pattern, the difference between measured and predicted spot size values showed a 

standard deviation ranging from 0.9 % to 1.6 %. These results highlight the reliability and 

accuracy of ML models in predicting spot size within the PBS system, leveraging log file 

data as input parameters. Moreover, spot symmetry was assessed along the major and minor 

axis directions using the predicted spot sizes, with all spots demonstrating symmetry values 

below 10%, which aligns with the TG224 recommended tolerance. 

Performing PSQA using dosimeters for each fraction is a challenging and time-

consuming task. Although MC-based PSQA [8,9,10] can be applied across all fractions, it 

has several limitations. These include the reliance on spot position and MU data from the 

log file, the need for dedicated computing resources to perform rapid dose calculations, and 

the inability to account for variations in spot size and symmetry during beam delivery. 

While PSQA for a single fraction ensures dose delivery accuracy, subsequent fractions may 

experience delivery errors due to variations in spot parameters. The beam delivery accuracy 

evaluation method proposed in this study offers a more efficient and practical solution. This 

method provides a quick and straightforward approach for evaluating the accuracy of all 
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spot parameters such as position, size, symmetry, and MU at the actual beam angle for each 

fraction. It can serve as an effective tool for validating the vendor’s beam delivery safety 

interlock system and as an alternative to routine spot parameter evaluations or MC-based 

PSQA, especially in the context of adaptive treatments where time is a critical factor. 

6.5 Conclusions 

The proposed log file-based approach offers a time-efficient and accurate 

alternative to traditional PSQA methods for evaluating proton beam delivery parameters. 

By leveraging in-house scripts and ML models, this method ensures compliance with 

TG224 recommendations, enhances QA efficiency, and supports adaptive treatments, 

particularly in workflows where time is critical. The findings highlight its potential for 

routine QA, enabling precise and reliable assessments of MU, spot size, position, and 

symmetry without the need for specialised dosimeters. By streamlining beam delivery 

evaluations, this approach not only enhances patient safety and clinical efficiency but also 

validates the use of log file data as a robust tool for ensuring dosimetric accuracy in modern 

proton therapy practices. 
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Chapter 7 

Summary and conclusions 

The QA process is crucial for ensuring the precision, safety, and effectiveness of 

radiotherapy, directly impacting patient outcomes. The adoption of automated, reliable 

tools is essential to replace traditional, labour-intensive methods, thus streamlining 

workflows without compromising patient care. These tools save time, optimise beam-on 

time, and enhance overall efficiency, ensuring timely and accurate treatments for cancer 

patients. Medical physicists play a pivotal role in implementing these advanced protocols, 

maintaining equipment performance, and upholding the highest standards of radiotherapy 

delivery, ultimately improving the effectiveness of the treatment workflow. 

Proton beam therapy employs PBS to deliver precisely controlled proton beam 

spots, generated by a cyclotron and guided through quadrupole magnets for focusing, 

bending magnets for steering, and tuning components for optimal performance. Due to its 

complexity, rigorous QA is required to assess dosimetric parameters and the accuracy of 

dose distributions. However, both machine QA and PSQA are labour-intensive and time-

consuming. This study focuses on implementing ML-based predictive models for PBS 

proton therapy QA. 

Chapter 1 provides a comprehensive overview of proton therapy, focusing on its 

principles and clinical applications. It delves into the technical specifications of the IBA 

Proteus Plus machine with PBS, which was utilised in this study. Additionally, the chapter 

introduces the significance of log file data in proton therapy and highlights the role of ML 

models in automating machine QA and PSQA processes. 

Chapter 2 provides a comprehensive literature review on the development of 

particle therapy and the clinical implementation of proton therapy in cancer management. 

The review highlights the distinct advantages of PBS proton therapy, particularly its ability 

to deliver highly conformal doses with exceptional precision, targeting tumours while 

sparing surrounding healthy tissues and critical structures. The layer-by-layer dose delivery 

enabled by PBS is especially effective for treating complex tumour geometries and tumours 

located near sensitive organs. This approach is particularly advantageous in paediatric 

oncology, as it significantly reduces the risk of long-term toxicities and secondary 

malignancies. Additionally, PBS delivers lower integral and skin doses, minimising overall 



 

143 
 

Chapter 7 

treatment-related side effects. Its compatibility with advanced techniques, such as IMPT 

and adaptive therapy, further ensures superior clinical outcomes in challenging cases. 

Chapter 2 also explores the role of log file data in radiotherapy, emphasising its 

utility in monitoring and evaluating treatment delivery. Furthermore, it reviews the 

application of ML models in automating the QA workflow in radiotherapy, highlighting 

their potential to enhance efficiency and accuracy in both machine QA and patient-specific 

QA processes. 

The irradiation log file data of the PBS system records all beam irradiation-related 

information in the machine nozzle head ionisation chambers, along with the parameters of 

all the beam-related components. Numerous data points are recorded in the log file during 

each beam irradiation, including spot dosimetric data. 

Chapter 3 presents a detailed analysis of PBS irradiation log file data and its 

correlation with spot parameters measured using the dedicated Lynx2D scintillator 

detector. The study involved measuring spot dosimetric parameters using a 5-spot pattern 

across various gantry angles and energy levels. Spot sizes along different axes were 

measured and compared with the corresponding log file-recorded spot size values. 

Additionally, the relative positional errors of the spots in the X and Y directions were 

evaluated by comparing Lynx2D measurements with log file data. Various statistical tools 

were employed for this correlation study, and the steps involved in log file data extraction 

were comprehensively summarised. 

The analysis revealed that Lynx2D-measured spot sizes demonstrated deviations of 

less than 8% across all energy ranges and gantry angles when compared with the baseline 

values and all the values were well within the 10% tolerance specified by AAPM TG224. 

Similarly, the spot positional error was less than 0.6 mm, meeting the recommended 

standard tolerance limits. However, when comparing log file-recorded spot sizes with 

Lynx2D measurements, the maximum difference observed was 23.9%. These findings 

indicate that log file-recorded spot sizes and positional data exhibit variations and 

uncertainties that exceed established tolerance limits when compared to scintillator-

measured values. This underscores the limitations of relying solely on log file data for QA 

processes and highlights the necessity of independent verification using reliable 
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measurement tools, such as the Lynx2D detector, to ensure accurate evaluation of spot 

dosimetric parameters. 

Chapter 4 examines the use of ML models to develop methods for QA in PBS 

proton therapy using log file data as input. The chapter details the development and 

validation of ANN-based ML models to predict spot sizes along the X, Y, major, and minor 

axes, as well as relative positional errors in the X and Y directions. Input parameters for 

the ML models were derived from log file data recorded by the nozzle head ICs (IC23 and 

IC1), which included spot size and position values, scanning magnet currents for both X 

and Y directions, beam current, and gantry angle. The ML model architecture, hyper 

parameter optimisation, and validation were thoroughly described, using statistical and 

cross-validation techniques to ensure robust performance. 

The MLP architecture was used for all six models, with three hidden layers 

containing 30 neurons each. The training was conducted over 100 epochs with a batch size 

of 30, employing the ReLU activation function and the Adam optimiser. The MSE loss 

function guided backpropagation to improve model accuracy. Individual models were 

developed to predict spot sizes along each axis and relative positional errors. The ML 

models achieved high precision, with RMSE values below 0.05 mm for the spot size 

prediction models and RMSE values below 0.03 mm for the positional error prediction 

models. The maximum prediction error was under 0.3 mm, and the MPAE remained below 

1%. These results align with the AAPM TG-224 tolerance limits of 10% for spot size and 

1 mm for positional error. 

This study demonstrates the reliability and efficiency of ML models as an 

alternative to traditional dosimeter-based QA methods, offering a precise, time-saving 

approach that enhances the accuracy and efficiency of PBS proton therapy systems. 

Chapters 3 and 4 provided a detailed analysis of log file data, including its 

comparison with Lynx2D-measured spot parameters, and described the development and 

validation of ML models. Chapter 5 focuses on developing an in-house tool to automate 

log file analysis and integrate these ML models. This tool facilitates the prediction of spot 

parameters and evaluates the accuracy of all dosimetric parameters for individual spots 

within a patient treatment beam using PSQA beam log file data. 
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An in-house tool was developed to streamline the process of log file analysis and 

enhance the integration of ML models for proton therapy QA. This tool uses custom scripts 

to efficiently read and analyse log file data, extract the input variables required for ML 

models, and predict spot parameters. The predicted parameters are systematically compared 

with the TPS-specified values, ensuring a detailed and accurate evaluation of all dosimetric 

parameters. Additionally, the tool generates comprehensive reports and conducts in-depth 

analyses, enabling an efficient and automated workflow for QA. 

The in-house tool is specifically designed to handle the intricacies of irradiation log 

file data. It separates data from the log file and converts spot positions recorded at the IC23 

level to the isocentre plane. It also converts the range specified in the specification file into 

corresponding energy values, ensuring compatibility with treatment planning and delivery 

parameters. Furthermore, the tool calculates baseline spot size values for each spot recorded 

in the log file, providing essential reference data for QA checks. 

To account for variations in nozzle head specifications across different gantry 

systems, the tool incorporates machine-specific details using the machine ID. This allows 

precise calculation of spot positions and ranges for each spot, tailored to the unique 

characteristics of the gantry. By automating these complex and time-intensive processes, 

the in-house tool significantly simplifies data analysis, improves accuracy, and enhances 

the overall efficiency of QA workflows in proton therapy. 

Chapter 6 discusses the application of the in-house tool described in Chapter 5 to 

evaluate the accuracy of dosimetric parameters for machine QA and PSQA beams. The 

study used 935 PSQA beam datasets for analysis. Routine QA data was also analysed using 

a comparison of Lynx2D-measured data with ML model-predicted data. The data 

comparison was conducted for different energies and gantry angles, and the mean 

difference between the Lynx2D-measured and ML model-predicted spot size values was 

less than 2%, with a standard deviation of less than 1.6%. The results showed excellent 

agreement between the predicted and Lynx2D-measured data, indicating that the use of 

dedicated dosimeters for routine QA can be replaced with the in-house tool for a quick 

check of parameters, without requiring excessive beam time, dosimeter usage, or 

manpower. 
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The in-house tool was used to analyse 935 PSQA beams, leading to an in-depth 

evaluation of all spot parameters for over 3 million spots in total. TPS-specified spot 

position, range, MU per spot, and baseline spot size values were compared with the data 

extracted from the log files and ML model predictions using the in-house tool. The study 

showed excellent results in the analysis. The proposed approach demonstrated strong 

agreement between TPS-specified and log file-recorded parameters, with MU variations 

for over 95% of the spots remaining below 2% and a standard deviation of 0.009 MU. Spot 

positional accuracy was also confirmed, with more than 95% of spots exhibiting deviations 

of less than 0.5 mm, with standard deviations of 0.181 mm and 0.132 mm for the X and Y 

directions, respectively, well within the 1 mm tolerance. 

While the log file data was less reliable for spot size evaluation due to its lower 

resolution, ML models provided a robust solution, achieving RMSE values of 0.15 mm and 

0.16 mm for X and Y spot sizes, respectively. Additionally, over 95% of spot sizes were 

within 10% of baseline values across all gantry angles. This integrated method simplifies 

the QA workflow, reduces reliance on direct measurements, and maintains precision, 

making it a time-efficient and reliable solution for routine QA and PSQA, particularly in 

adaptive proton therapy workflows, where time constraints are critical. 

This thesis, titled “Implementation of ML in the Proton Therapy QA”, presents an 

in-depth exploration of the application of ML models and log file data to enhance QA in 

PBS proton therapy. The study demonstrates that the integration of ML-based predictive 

models and a custom-designed in-house tool provides a reliable, efficient, and accurate 

alternative to traditional, labour-intensive QA methods. The in-house tool facilitates the 

automated analysis of log file data, precise prediction of spot parameters, and 

comprehensive evaluation of dosimetric parameters for both routine QA and PSQA beams. 

The results validate the robustness of this approach, showing excellent agreement between 

ML-predicted spot parameters and dedicated dosimeter measurements, with deviations 

consistently within established tolerance limits. This work establishes a novel framework 

for leveraging ML in proton therapy QA, significantly streamlining workflows while 

ensuring dosimetric precision. The findings underline the transformative potential of this 

approach in advancing adaptive proton therapy workflows, optimizing resource utilisation, 

and improving patient safety and treatment outcomes. 
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Recommendations 

Implementation of ML Models for Automation in Proton Therapy QA 

This research has detailed and summarised the implementation of ML models to 

automate QA in PBS proton therapy. A significant contribution of this work is the effective 

utilisation of log file data as input for ML models to analyse all spot dosimetric parameters 

of the PBS system, thereby simplifying the QA process. The research highlights the 

development and validation of an in-house method that employs ML models and log file 

data for PBS machine QA. This method eliminates the need for dedicated dosimeters, 

reduces time-consuming measurements, and minimises manpower requirements while also 

reducing beam-on time. 

The proposed approach significantly enhances the efficiency of QA workflows by 

reducing dependency on traditional methods, which often involve extensive manual 

measurements and the use of specialised equipment. By leveraging log file data and ML 

algorithms, this research ensures that proton therapy machines can be optimally utilised for 

cancer treatments without dedicating excessive time to QA and analysis. The automation 

of QA and PSQA workflows not only streamlines operations but also minimises treatment 

interruptions, ensuring that patients receive timely and uninterrupted care. 

Furthermore, the automated system facilitates real-time feedback, enabling early 

detection and correction of potential errors. This advancement represents a critical step 

forward in improving the precision, reliability, and time efficiency of QA processes in 

proton therapy centres. 

Recommendations for Integration into Clinical Practice 

1. Integration of Developed Tools: To ensure seamless clinical adoption, the 

developed tools should be integrated into the existing software environment of 

proton therapy systems, such as the IBA Proteus Plus machine. Adding these tools 

to the current IBA software will enable real-time data extraction and analysis. This 

integration ensures that immediately after each beam irradiation, the QA system can 

automatically perform the required analyses using ML models. 
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2. Staff Training: Training clinical staff is crucial to ensure a smooth transition from 

traditional QA methods to ML-based automated systems. Dedicated training 

programmes should be developed to help medical physicists and radiation therapists 

understand the principles of ML tools and how to use them effectively in routine 

QA. 

Future Research Recommendations 

1. Multi-Institutional Validation: To enhance the robustness and reliability of the 

developed ML models, future studies should focus on validating the tools across 

multiple proton therapy centres. Such multi-institutional studies will ensure that the 

models are adaptable to diverse configurations and systems, broadening their utility 

and practical application. 

2. Development of User-Friendly Interfaces: Intuitive software interfaces should be 

designed to make ML-based tools accessible to clinicians and physicists without 

requiring extensive technical expertise. User-friendly interfaces will promote wider 

adoption and ensure that these tools can be effectively utilised in clinical settings. 

3. Extension to Dose Prediction Models: The scope of the study can be extended to 

include dose distribution prediction in patient CT scans using predicted spot 

parameters. Such an approach will provide detailed information about the actual 

delivered dose distribution in the patient CT scan, offering greater clarity in 

analysing tumour response and normal tissue toxicity in patients undergoing proton 

therapy. Dose prediction models can be developed using advanced deep learning 

techniques such as Convolutional Neural Networks (CNNs) and Generative 

Adversarial Networks (GANs). These models would allow for a comprehensive 

assessment of treatment efficacy and potential side effects, thus contributing to 

improved patient outcomes. 

By addressing these recommendations, this study can serve as a foundation for 

advancing proton therapy QA processes and expanding the clinical application of ML 

models. These steps will ensure that proton therapy continues to evolve as a precise and 

efficient treatment modality for cancer patients. 
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physics, and radiobiological advantages of particle therapy. Outcomes of particle therapy for sites such as the head-and-neck, central nervous 
system, lung, and prostate have been discussed. The physical and biological properties of particle therapy have been shown to be effective 
in reducing radiation-induced acute toxicities to a large extent as well as reducing the integral dose, i.e., the sum of dose delivered at every 

the potential risks associated with radiation therapy. The advantages of particle therapy over conventional photon therapy in terms of overall 
survival and local control rates have been described. Advances in image guidance and newer particle acceleration technologies have improved 
the efficiency of particle therapy treatment.
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