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Abstract

Quality Assurance (QA) is critical in ensuring precision, safety, and effectiveness
in proton radiotherapy, directly influencing patient outcomes. However, conventional QA
methods are labour-intensive and time-consuming, challenging efficiency and workflow
optimisation. Machine Learning (ML) models provide a transformative solution by
automating complex QA processes, streamlining workflows, and enhancing operational
efficiency without compromising care. This study investigates the application of ML
models for automating QA in pencil beam scanning (PBS) proton therapy systems,
underscoring the need for automated tools to optimise QA.

The study was conducted using data from the IBA Proteus Plus Proton Therapy
System. The accuracy of PBS delivery relies on critical spot dosimetric parameters such as
spot size, spot position, spot symmetry, energy or range, and machine output calibration.
Routine QA involves measuring these parameters using dedicated dosimeters. A log file
records data during beam delivery, including spot position, charge, spot size, scanning
magnet currents, beam current, gantry angle, and ionisation chamber readings. Even though
log files monitor spot parameters in real time and trigger beam interruptions if deviations
exceed predefined tolerances, discrepancies between log file data and dedicated dosimeter-

measured values can limit their direct use for QA.

In the initial part of this study, the correlation between log file-recorded and
scintillator-measured spot parameters is examined to understand the limitation and
highlight the importance of log file analysis. Spot measurements were conducted using a
Lynx2D scintillator detector by irradiating a 5-spot pattern across the energies ranging from
70.18 MeV to 226.2 MeV at 12 gantry angles. A total of 9,000 spots were measured which
recorded key parameters (spot size, position, and symmetry) along X-Y axes and major-
minor axes. These measurements were compared with the corresponding baseline values
and also with log file recorded data to evaluate accuracy. The comparison between Lynx
2D-measured spot parameters and their corresponding baseline values set during initial
beamline commissioning showed excellent agreement. Maximum variations in X-axis spot
size were 6.5 % at a range of 25.5 g/cm? (gantry angle 270°), while Y-axis variations were
7.31 % at 30.5 g/cm? (gantry angle 30°). Standard Deviations (SD) were below 2.6 % (X-
axis) and 3 % ('Y-axis), and root mean square errors (RMSEs) were 2.5 % (X-axis) and 2.9



% (Y-axis). Relative positional errors were well within 1 mm, and all variations met the
AAPM TG-224 tolerance limits of 10 % for spot size and 1 mm for position, indicating

machine stability and measurement reliability.

In contrast, comparisons between log file-recorded and Lynx2D-measured
parameters revealed significant discrepancies. Maximum differences in X-spot size (23.90
%) were observed for the range 19.5 g/cm? (gantry angle 90°), and Y -spot size differences
(21.04 %) observed for the range 4.1 g/cm2 (gantry angle 240°). Both exceeded the TG-224
tolerance of 10 %. Mean differences were 7.64 % (X-axis, SD: 5.62%) and 6.7 % (Y -axis,
SD: 4.75 %), with maximum RMSEs of 9.5 % (X-axis) and 8.21 % (Y-axis). Positional
errors are marginal to the 1mm tolerance, with maximum errors of 0.910 mm (X-axis) and
1.610 mm (Y-axis). Hence the direct use of log file data for machine QA is limited due to
significant discrepancies observed between Lynx2D-measured spot parameters and log

file-recorded spot parameters.

ML models, such as Artificial Neural Networks (ANNS), can effectively address
the poor correlation between log file recorded data and measured data. These models
leverage their ability to handle non-linear relationships and uncertainties, enabling more
accurate predictions of spot dosimetric parameters. By bridging the gap between log file
data and measured values, ML models enhance the reliability of machine QA and patient-
specific QA (PSQA). In the second part of this study, six ANN models using a Multi-Layer
Perceptron (MLP) architecture to predict spot size and relative positional error were
developed. The Input parameters for model development were log file recorded data and
the output parameters were the Lynx2D-measured values. Each model featured one input
layer, three hidden layers, and one output layer, with Rectified Linear Unit (ReLU)
activation functions and the Adam optimiser. The dataset was split into 70 % training, 15
% validation, and 15% testing subsets. Hyper parameter tuning yielded an optimal
configuration: 100 epochs, three hidden layers, 30 neurons per layer, a batch size of 30, and
a learning rate of 0.001. The Mean Squared Error (MSE) was used as the loss function. The
models were developed using ML libraries TensorFlow and Keras in Python, with
validation through metrics such as RMSE, R-squared, scatter plots, and Q-Q plots. Cross-
validation (k=5) confirmed robust generalisation, with RMSE values below 0.150 mm and
R-squared above 0. 960. The ML models demonstrated high prediction accuracy. For spot

size prediction, MSE values were below 0.0028 mm, RMSE was 0.050 mm, and R-squared



was 0.991. Relative positional error models achieved MSE of 0.001 mm, RMSE of 0.035
mm, and R-squared of 0.996. Cross-validation and normality tests validated their reliability
and generalisability. The models effectively bridged the gap between the log file data and
measured values, enabling their use for QA.

The final part of the study discusses the development and implementation of an in-
house script-based tool to integrate log file data extraction and ML models for predicting
spot parameters for machine QA and patient-specific QA. The patient treatment beam
contains usually thousands of spots. The measurement and analysis of each spot’s accuracy
is practically impossible and time-consuming. The in-house script automates the analysis
of all the spot dosimetric parameters from irradiation log files using ML models. The
comparison of the Treatment Planning System (TPS) specified spot parameters with the
delivered spot parameters using the automated tool for quick analysis and reporting. It
processes the log and specification files to extract spot position and MU values, generating
input data for the ML models to predict spot sizes. The script then produces comprehensive
reporting of all the spot parameters including the total number of layers, spots per layer,
MU values, and the percentage of spots with variations in size, position, symmetry, and
MU. It highlights the percentage of spots with less than 10% size variation, 1 mm position
variation, below 10 % symmetry, and less than 2 % MU variation. The tool was evaluated
using routine QA data and post-irradiation log files from PSQA beams. Routine QA
involved 5-spot pattern measurements across 30 energy levels (70.18-226.2 MeV) at 12
gantry angles. Data from 1080 five-spot patterns across three gantries over three months
were analysed. For PSQA, log file data from 935 PSQA beams (approximately 3 million
spots) were evaluated.

The results of the use of the in-house tool for machine QA data revealed notable
discrepancies between measured and log file-recorded spot sizes, with mean differences
ranging from 0.7 % to 4.0 % and standard deviations between 6.3 % and 8.6 % across
gantry angles. Predicted spot sizes showed closer alignment, with mean differences ranging
from 0.5 % to 1.25 % and standard deviations between 0.9 % and 1.6 %. Predicted spot
symmetry deviated by less than 1 % from the measured values, and MU differences were
within 1 % of the specified values.

Analysis of 935 PSQA beams revealed promising results. Over 99.5 % of spot
positions were within 1 mm accuracy. Mean positional errors were -0.021 mm (SD: 0.181
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mm) along the X-axis and -0.002 mm (SD: 0.132 mm) along the Y-axis. ML models
maintained strong performance in predicting spot sizes, with over 95 % of spots showing
variations within 10 % of baseline values. RMSEs for spot size differences were 0.15 mm
(X-axis) and 0.16 mm (Y-axis). Spot symmetry was within 10 %, and MU accuracy showed

that 95 % of spots had variations below 2 %.

This study highlights the effectiveness of integrating ML models with log file data
to enhance the QA process in PBS proton therapy. By combining ML-based predictive
models with an in-house tool, this approach provides an efficient and reliable alternative to
traditional QA methods. The automation of log file analysis, prediction of spot parameters,
and evaluation of dosimetric accuracy for both routine and PSQA significantly improves
workflow efficiency, reduces the time required for QA, and minimizes the reliance on
dedicated dosimeters. The strong correlation between ML predictions and dosimeter
measurements, within established tolerance limits, further underscores the potential of this
integrated tool to optimize dosimetric precision, enhance patient safety, and streamline the
QA process, ultimately reducing the need for extensive manpower and improving overall

operational efficiency in proton therapy.
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Chapter 1- Introduction
1.1. Radiotherapy

Radiotherapy is an advanced cancer treatment modality that employs high-energy
radiation to destroy or damage cancer cells [1]. This treatment approach originated in the
early 20™ century after Wilhelm Conrad Roentgen discovered X-rays in 1895 and the
subsequent realization of their potential in cancer treatment. Radiotherapy works by
directing radiation at cancer cells, damaging their deoxyribonucleic acid (DNA) and
hindering their ability to replicate [2]. Healthy cells can typically recover from this damage,
whereas cancer cells struggle to repair themselves, ultimately leading to death.
Radiotherapy can be employed on its own or in combination with other treatments, such as
surgery, chemotherapy, and immunotherapy, to enhance its effectiveness. Over time,
technological and technical advancements have significantly enhanced radiotherapy's
precision, effectiveness, and safety. A review by Chandra R. A. et al. [3] examined the
advancements in radiotherapy techniques and imaging technologies in the current era. The
introduction of techniques like Three-Dimensional Conformal Radiation Therapy (3D-
CRT) and Intensity-Modulated Radiation Therapy (IMRT) has enabled more precise
targeting of tumours, reducing unnecessary radiation exposure to surrounding healthy
tissues [4]. Advanced imaging techniques, such as Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), and Positron Emission Tomography (PET) scans, are employed
to locate the tumour and guide radiation delivery accurately [5]. Radiotherapy is a
continually evolving field driven by ongoing research and technological advancements to
improve therapeutic effectiveness and minimize side effects. This progress highlights the
essential role of radiotherapy in the multidisciplinary treatment of cancer, providing hope

and better outcomes for patients globally.

Radiotherapy employs a range of advanced techniques and modalities to enhance
cancer treatment, including both conventional photon therapy and advanced particle
therapy. For many years, conventional photon therapy, primarily X-rays and y-rays, has
been the cornerstone of radiotherapy. It uses linear accelerators to produce high-energy
photons that penetrate tissues, targeting the tumour and affecting nearby healthy tissues.
Techniques such as 3D-CRT and IMRT have enhanced the accuracy of photon therapy by
shaping the radiation dose to match the tumour and adjusting the beam intensity

accordingly. However, due to the inherent properties of photons, some radiation inevitably
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passes through the tumour and continues to deposit energy in the surrounding healthy
tissues, which can cause side effects [6]. Despite this limitation, photon therapy remains
highly effective for treating various types of cancer and is widely accessible. In contrast,
advanced particle therapy, such as proton and carbon ion therapy, provides superior dose
distribution because of the unique characteristics of charged particles [7]. These particles
have the distinct advantage of the Bragg peak, where the highest energy deposition occurs
just before the particles stop, enabling a highly localized delivery of radiation with minimal
exit dose. Proton therapy is especially beneficial for treating tumours located near critical
structures or in paediatric patients, as it minimizes the risk of radiation-induced secondary
cancers [8-10]. Carbon ion therapy, which has a higher linear energy transfer (LET), inflicts
more complex and irreparable DNA damage on cancer cells [11]. The increased biological
effectiveness of carbon ions allows for greater tumour control with potentially fewer
treatment sessions. As a result, although conventional photon therapy is still widely used
and effective for many types of cancer, particle therapy marks a significant advancement
by offering greater precision and reduced toxicity. A study by Tinganelli W. et al. [12]
found that the radiobiological features of carbon ion therapy are more effective in treating
radio-resistant hypoxic tumours. This expands the therapeutic window and improves
patient outcomes. Additionally, integrating advanced imaging techniques and real-time
monitoring enhances the accuracy and safety of both photon and particle therapies,
highlighting the ongoing evolution of radiotherapy in the quest for better cancer treatment.
Figure 1.1 illustrates the differences in dose distributions across various radiotherapy

modalities for a prostate cancer patient.

Schematic 200kV RT Linac 2D Linac IMRT

Figure 1.1: Evolution of Radiotherapy Treatment Planning from 1935 to 2010,
Demonstrating Dose Distributions for Prostate Cancer Using Various External Radiation
Therapy Modalities from 200 kV X-ray to Carbon lons (Thariat, J et al 2013 [1]).
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1.2 Particle therapy

The use of accelerated protons, carbons, or other heavy ions for cancer treatment is
called particle therapy [13-14]. The protons and heavy ions interact with matter and deposit
maximum energy in the Bragg peak position. The maximum dose deposition by the sharp
Bragg peak ensures tumour dose coverage and better normal tissue sparing than
conventional photon-based radiotherapy. The high Radio Biological Effect (RBE) and LET
near the Bragg peak provide additional biological advantages to particle therapy. Currently,

proton and carbon ion therapy are the advanced particle therapy systems used worldwide.

1.2.1 Proton therapy

The therapeutic use of protons was introduced by Wilson et al. In 1946 [15]. The
physical properties, such as Bragg peak and zero exit dose, enhanced the application of
proton therapy. Currently, there are more than 100 centres that use proton therapy for
cancer treatment. Most proton therapy systems use cyclotron or synchrotron-based particle
acceleration and dedicated energy selection and transport systems to ensure accurate dose
delivery to the patient. Passive scattering and Pencil Beam Scanning (PBS) techniques are
the most used proton therapy delivery techniques [16]. In the passive scattering system, the
mono-energetic proton beam passes through scattering foils and a rotating range
modulation wheel to create a uniform beam in the lateral direction, and the target
conformity in the longitudinal direction is ensured by patient-specific range compensator
and collimator used for lateral field conformity. The technique is widely used for treating
many treatment sites [17]. However, passive scattering has disadvantages, such as needing
patient-specific and beam-specific range compensators and collimators. This increases
treatment time and lateral penumbra due to secondary particles from interactions with the

range modulator and scattering materials.

The Paul Scherrer Institute (PSI) introduced the PBS technique of particle therapy
[18]. The PBS technique uses different technology compared to passive scattering. In a
cyclotron-based PBS system, the mono-energetic proton beam produced by the cyclotron
passes through a dedicated degrader wheel with varying blocks of materials which produce
different energy proton beams. A proton beam with an energy range of 70 MeV to 250
MeV is commonly used for clinical treatment [19]. The mono-energetic pencil beams pass

through an energy selection system and many dipole and quadrupole magnets to ensure
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proper beam size, energy and position. Finally, the pencil beams enter the gantry head
called the nozzle. The nozzle has two scanning magnets, which defect each pencil beam to
different X and Y directions to cover the tumour lateral shape and deliver different energy
pencil beams to ensure longitudinal dose conformity to the tumour. Compared to a passive
scattering system, the PBS system does not require dedicated range compensators and
collimators. The Spread-Out Bragg Peak (SOBP) is created by overlapping multiple mono-
energetic proton beams to cover the tumour volume and ensure minimal dose to
surrounding normal tissues. The PBS technique is a very fast and conformal treatment

compared to passive scattering systems.
1.2.2 Carbon ion therapy

The accelerated carbon ions interact with matter in a way that is almost similar to
proton beams. However, the carbon ions have a sharper Bragg peak width and higher RBE
and LET distribution than proton therapy. Carbon ions are used for radiotherapy because
of their physical and biological properties. The invention of the Synchrotron by Vladimir
Veksler [20] in 1944 boosted the use of particles for radiation therapy. The first carbon ion
therapy was done by the Heavy lon Medical Accelerator in Chiba (HIMAC) in 1994 [21].
Due to the high LET and RBE of carbon ions, the damage created by carbon ions clustered
in DNA overwhelms the cellular repair system. The carbon ion therapy also uses passive
scattering and active scanning systems for beam delivery. Carbon ion therapy is very

efficient for dose escalation to radio-resistant tumours.
1.2.3. Helium and other heavy ion therapy

The helium ion shows intermediate physical and biological properties between
proton and carbon ion therapy. The lateral penumbra and range straggling are less with
helium ions than protons and high RBE and LET. The first Helium ion therapy started at
Lawrence Berkeley National Laboratory (LBNL) in 1994 [22]. The Heidelberg lon Beam
Therapy Centre (HIT) have started raster scanning helium ion therapy [23]. The high cost
of construction and operation of particle therapy is the limiting factor of particle therapy.
Protons and carbon ions gain popularity in particle therapy in the early 90’s. Between 1975
and 1992, the potential of various heavy ions, including helium, pions, neon, and argon,
was investigated for radiotherapy in a laboratory setup at the LBNL [24]. Currently, only
protons, carbon, and helium ions are used in clinical radiotherapy. In the future,

advancements in technology and reductions in cost are expected to expand the use of other
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heavy ions in particle therapy. Figure 1.2 represents the depth dose distribution of different

particles used for particle beam therapy.
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Figure 1.2: The depth dose distribution of different charge particles used for particle
therapy. Pion 50MeV, Carbon ion 300MeV/u, Proton 175MeV, and Helium 170MeV/u.

1.3 Pencil Beam Scanning Proton Therapy System

The introduction of the PBS technique in proton therapy has significantly enhanced
the utility of proton therapy through various technological advancements. PBS allows for
highly precise and accurate dose delivery by scanning a narrow proton beam across the
tumour in a controlled manner, reducing the treatment time and improving efficiency. PBS
also offers superior accuracy in targeting tumours, especially those with complex shapes or
located near critical structures, minimizing damage to surrounding healthy tissues. These
benefits make PBS a superior and more efficient option in modern proton therapy, offering

improved treatment outcomes and a better quality of life for patients.

The PBS proton therapy technique utilizes two types of particle accelerators for
proton beam production: Cyclotrons and Synchrotrons. Most commercial systems employ
cyclotron-based systems for beam production. However, centres that use multiple particles
for therapy typically use synchrotrons for beam production. Figure 1.3 shows the IBA
Proteus Plus machine treatment room. The dosimetric data measurement for this thesis was
obtained from the IBA Proteus Plus proton therapy machine installed at ACTREC, Tata
Memorial Centre, Mumbai. The Proteus Plus uses an isochronous cyclotron. The system
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has multiple components, including the Beam Production System (BPS), Energy Selection

and beam Transport System (ESBTS), and Beam Delivery System (BDS).

=
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Figure 1.3: The IBA Proteus Plus treatment gantry installed at National Hadron Therapy
Centre, ACTREC, Tata Memorial Centre, Mumbai.

1.3.1 Beam production system (BPS)

The BPS predominantly consists of the cyclotron and the beam extraction system.
The 230 MeV isochronous cyclotron accelerates protons to high energies utilizing a
combination of magnetic and electric fields (Figure 1.4). Protons, introduced from a
hydrogen gas ion source into the cyclotron's central region, are constrained to move in
circular orbits by a static magnetic field. An alternating electric field, produced by two D-
shaped electrodes (Dees), accelerates the protons each time they traverse the gap between
the Dees [25]. The isochronous design ensures that the magnetic field strength increases
with radius, maintaining a constant cyclotron frequency for protons at all radii. This
synchronization enables the protons to gain energy and spiral outward until they reach 230
MeV. Upon reaching this energy, the protons are extracted via a deflector, which diverts

them from their circular trajectory into the energy selection and transport system. The
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cyclotron can extract a maximum beam current of 300 nA and a minimum current of 1 nA.
Key components include the ion source, Radio Frequency (RF) source, main coil, and

deflector.

The RF system generates the alternating electric field necessary for proton
acceleration. It includes RF cavities, or Dees, positioned within the cyclotron’s vacuum
chamber. The RF system produces an oscillating electric field between the Dees, with an
oscillator generating a signal that matches the cyclotron's resonance frequency. This
ensures that the electric field oscillates in synchrony with the protons' circular motion. RF
amplifiers then boost this signal to the power required to create a sufficiently strong electric

field to effectively accelerate the protons with each pass through the Dee gap.

Figure 1.4: The Cyclotron C230 installed at National Hadron Therapy Centre, ACTREC,
Tata Memorial Centre, Mumbai.

The main coil produces the magnetic field that confines protons to their circular
paths during acceleration. This is achieved with large electromagnets forming the main
coil, which generates a uniform magnetic field perpendicular to the proton's plane of
motion. Powered by a high-current supply, the main coil maintains the necessary magnetic
field strength for proton guidance throughout the acceleration process. After acceleration,
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the proton beam is deflected by a dedicated deflector, passes through quadrupole magnets,

and proceeds to the energy selection system.
1.3.2 Energy Selection and Beam Transport System (ESBTS)

The ESBTS is responsible for converting the 230 MeV fixed-energy beam produced
by the cyclotron into a variable energy beam, adjustable between 70.18 MeV and 226.2
MeV. Additionally, the energy selection devices in the ESBTS are designed to block
unwanted beam particles from proceeding through the beam line. They also verify and
regulate the absolute energy, energy spread, and emittance of the beam as it exits the energy
selection section and enters the static beam line. This control is achieved using a
combination of quadrupole and dipole magnets, along with an energy degrader, collimators,

and slits.

The degrader wheel is a rapidly adjustable, servo-controlled rotating variable-
thickness cylinder. The diagram of the degrader wheel is given in figure 1.5. The purpose
of the degrader wheel is to degrade the energy of the beam produced from the cyclotron to
the clinically required energies, which range from 70.18 MeV to 226.2 MeV. The rotation
of the wheel is synchronized to pass the proton beam through the variable thickness portion
of the wheel. The beam energy is changed in function of the variable thickness of the block
of absorbing material. The total time needed to adjust the degrader's orientation to achieve
different beam energies is less than one second. This adjustment is facilitated by a stepper
motor that controls the degrader's rotation.

Figure 1.5: The Degrader wheel with different density materials to degrade energy from
226.2MeV to 70.18 MeV (Picture courtesy to IBA user Manual).
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After adjusting the beam energy with the degrader wheel, the beam will exhibit
divergence and angular spread. Dedicated slits and a collimator assembly are employed to
eliminate beams that are too off-centred or have excessively large divergence angles.
Following the collimator assembly, the beam passes through multiple quadrupole and
bending magnets to reach the beam delivery system. The quadrupole magnets ensure the
beam remains centred in the beam-transporting tube, while the bending magnets redirect

the beam as needed. Finally, the beam enters the beam delivery system. The figure 6 shows

the components in the energy transport system of the IBA Proteus Plus machine.

)

Figurel.6: The energy selection system of the IBA Proteus Plus machine.

1.3.3 Beam Delivery System (BDS)

The BDS consists of a rotating gantry and a nozzle. The beam transport line

connects to the rotating gantry using a coupler known as a rotary feedthrough. Figure 1.7

Figure 1.7: Rotary feedthrough.
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shows the rotary feedthrough accessory. This rotary feedthrough provides a vacuum
coupling that allows the static beamline to transition into a rotating beamline, which is

essential for the gantry's rotation.

Once the beam enters the rotating gantry, it encounters multiple quadrupole
magnets that focus the beam. A 135° large bending magnet then bends the beam, directing
it towards the nozzle. The entire gantry assembly is capable of 360° rotations and is
connected to a rotating assembly, allowing for precise beam direction and flexibility in

treatment angles. Figure 1.8 represents the rotating gantry assembly.

The nozzle consists of an initial lonization Chamber (IC1), followed by a
quadrupole magnet. The IC1 monitors the spot position accuracy to ensure precise
targeting. The quadrupole magnet focuses the beam along the central line. After the
quadrupole magnet, there are two scanning magnets used to deflect the pencil beam in the
X and Y directions as required for patient treatment. The deflected beam then passes
through another set of ICs known as 1C23. The 1C23 monitors record the spot size and
position of each beam spot. Finally, the beam is delivered to the patient, who is positioned

using the patient positioning system to ensure accurate and effective treatment.

135° dipole = e s
magnet support
structure

Front ring |

assembly
(7 total)

dipole magnet
counterweight
support

Figure 1.8: The Schematic Diagram of the rotating gantry. The bending magnets and
rotating system are depicted in the figure (Picture courtesy to IBA user Manual).
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1.4 Quality Assurance of Pencil Beam Scanning Proton Therapy

Quality assurance (QA) in PBS proton therapy is essential for ensuring accurate and
safe treatment administration [26]. The QA process encompasses thorough evaluations and
adjustments of the proton beam's energy, intensity, and spatial accuracy. This includes
routine machine performance assessments, verification of patient-specific treatment plans,
and dosimetric evaluations using sophisticated detectors and imaging technologies.
Accurately controlling the proton beam's parameters is crucial for optimising tumour
eradication while minimising harm to surrounding healthy tissues. Comprehensive QA
procedures are vital for detecting and rectifying any discrepancies from the prescribed
treatment plan, thereby ensuring optimal patient outcomes and upholding the high
standards of proton therapy.

The American Association of Physicists in Medicine (AAPM) Task Group (TG)
224 report [27] recommends standardized QA procedures for PBS proton therapy systems.
The report outlines QA protocols to be performed on a daily, weekly, monthly, and annual
basis to ensure the optimal performance and safety of the proton therapy system.
Specifically, the report highlights the importance of monitoring key dosimetric parameters
for PBS systems. These include the energy of each proton beam, the spot size in both the
X and Y directions, spot symmetry, spot position accuracy, and dose accuracy. Regular
checks and calibrations of these parameters are essential to maintain the precision and
effectiveness of PBS proton therapy, ensuring that the treatment is delivered accurately and

consistently to achieve the best possible patient outcomes.
1.4.1 Mechanical QA

Mechanical QA in PBS proton therapy includes the performance evaluation of all
mechanical parts, such as the patient positioning system, gantry, snout, imaging system,
and laser system. Specifically, it involves assessing the gantry angle accuracy of the
rotating gantry, the snout position accuracy, and the table translational and rotational
movement accuracy. Additionally, the accuracy of the laser system and its coincidence with

the machine isocentre must be evaluated to ensure proper patient positioning.

The mechanical accuracy of each component is crucial to ensuring accurate patient
positioning before beam delivery. This precision is vital for delivering the proton beam to

the exact location as planned, minimizing radiation exposure to surrounding healthy
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tissues. Mechanical QA is integral to the daily, monthly, and annual QA protocols for PBS
systems. Regular testing and verification of mechanical components help maintain the high
standards required for effective and safe proton therapy treatments. By adhering to stringent
mechanical QA procedures, PBS proton therapy systems can achieve the precise and

conformal radiation doses necessary for optimal patient outcomes.
1.4.2 Dosimetric QA

The dosimetric QA in a PBS system includes the measurement of beam energy, spot
size, spot position, and output. Any variation in the range of each spot in the PBS beam can
lead to a shift in the Bragg peak position. If the actual range is less than the set value, the
distal edge of the target will be under-dosed. Errors in the range can result in significant
dose differences at the target's distal edge. Similarly, variations in spot size can cause
inhomogeneous dose distributions, leading to underdoing or overdosing within the target
volume. Regular and accurate dosimetric QA ensures that the proton therapy system
delivers the correct dose distribution as planned, maintaining the effectiveness and safety
of the treatment. By meticulously measuring and verifying these parameters, any deviations

can be identified and corrected promptly.
1.4.3 Range or Energy

The energy of a proton beam refers to its initial kinetic energy, which determines
how deeply the beam can penetrate tissue. As the energy of the protons increases, their
penetration depth also increases. The relationship between the energy and the range of the
proton beam is directly proportional, meaning that higher-energy protons achieve greater
depths. The range is defined as the distal depth where 90% of the proton beam's energy is
deposited. This relationship between range and energy can be quantitatively described by

a specific equation (Equation 1.1).
Range(cm) = Exp(a = In(E)3 + b xIn(E)? + ¢ *In(E) + d) (1.1)

Where, E- Energy in MeV. a, b, ¢ and d are the coefficients. a=-0.0133, b=0.15248,
€=1.2193, and d=-5.5064.

The range of each energy pencil beam in proton therapy is typically measured using

large-area parallel plate ionization chambers through two main methods. The first method
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involves a single parallel plate chamber to measure dose at various depths and plot the
integrated depth dose (IDD) curve, from which the R90 range the depth where 90% of the
proton's energy is deposited is determined. The second method employs a Multi-Layer
lonization Chamber (MLIC), a specialized array detector with multiple stacked chambers
that simultaneously measures dose at different depths. The data from the MLIC is combined

to produce the IDD curve and determine the proton range.
1.4.4 Spot size

In pencil beam scanning proton therapy, determining the spot size of the beam is
essential for accurately delivering radiation doses to tumours while minimizing damage to
surrounding healthy tissues. The pencil beam typically exhibits a Gaussian distribution of
intensity, where the intensity is highest at the centre and decreases symmetrically when
moving away from it. Figure 1.9 plots the Gaussian distribution of the spot. In PBS, the
spot size is defined by the width of one standard deviation (o) or sigma of this Gaussian
distribution, called sigma. The spot size is typically measured in air using dedicated
scintillator detectors. Equation 1.2 shows the relationship between Full Width Half
Maximum (FWHM) and sigma.

FWHM = 2355 ¢ (1.2)
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(a) Schematic representation of the Pencil beam spot
in Proton therapy
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Figure 1.9: The representation of the spot size of a Pencil Beam Scanning (PBS) Proton
therapy beam. (a) Schematic representation of a typical spot in PBS, (b) 1D Gaussian
distribution of the spot.

The spot size is energy-dependent. For lower energy beams, the spot size is larger
due to increased lateral scattering of protons in air. In contrast, for higher energy beams,
the spot size is smaller because there is less lateral scattering. This energy dependence must
be considered in treatment planning to ensure accurate dose delivery and effective tumour

targeting.
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1.4.5 Patient-Specific QA

The patient-specific QA (PSQA) is the procedure to ensure the dose delivery
accuracy of each patient treatment plan before the start of actual treatment. The PSQA
compare the dose distribution calculated in the Treatment Planning system (TPS) with the
dose distribution measured using dedicated dose measurement devices. The conventional
method of PSQA in a PBS system is to measure dose fluence using a dedicated ionisation
array detector compare the fluence with the TPS dose fluence and perform gamma analysis
[28]. Gamma analysis is a process of comparing two dose fluence matching. It utilizes two
main criteria: Distance-to-Agreement (DTA), which assesses the spatial proximity of
measured and planned dose points, and Dose Difference (DD), which evaluates the
discrepancy in dose levels. The results are represented as a gamma index, where a passing

rate indicates successful treatment delivery.

In the PBS system, the conventional method of PSQA involves measuring dose
fluence using a dedicated ionization array detector. This method compares the 2D fluence
measured for individual beams. A study by Zhu XR et al. [29] involving 249 prostate cancer
patients treated with a spot-scanning proton therapy system found that the gamma index
was greater than 96% for all patients when performing PSQA with a 2D detector array.
Another method of PSQA is Monte-Carlo (MC) based independent dose calculation
algorithms [30-31].

1.5 Log file analysis

Log files in radiotherapy are vital records that capture comprehensive data on
various parameters and events during each beam irradiation session. These logs include
details such as machine settings, beam characteristics, patient information, and system
events. The use of log files in radiotherapy includes analysis of the accuracy of beam
delivery, statistical data analysis and also used for retrospective data analysis and audit.
They allow for the identification of trends or patterns that may indicate issues with
treatment delivery or equipment performance. In the event of an incident or adverse
outcome, log files can serve as an essential resource for investigating the root cause and

implementing corrective actions.

Log files play a critical role in photon therapy by recording detailed information
about the treatment delivery process. These files capture the positions of Multi-Leaf
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Collimators (MLCs) at each control point, the monitor units (MU) delivered for each MLC
segment, and the gantry and collimator angles, along with other beam-related parameters.
Numerous studies have leveraged these log files in conjunction with MC simulations for
routine QA and PSQA [32-33].

Similarly, in proton therapy, log files are equally essential as they document vital
data regarding the beam's energy, position, and various delivery parameters. This
information is crucial for ensuring the precision and accuracy of the treatment. The
potential of log files as a tool for routine QA and PSQA in proton therapy is increasingly

recognized.

In PBS proton therapy, log files capture data at intervals of every 200 microseconds,
resulting in extensive records for each spot. Each spot's log file may contain multiple rows
of data detailing parameters such as the position and size of the spot as measured by
different transmission ICs, the current and voltage of scanning magnets, the charge
collected in primary and secondary dose meters, the beam current, and the set range value.
After each spot is delivered, these parameters are meticulously recorded. The spot position
and MU data are particularly valuable, as they can be used to independently re-calculate
the delivered dose using MC algorithms. The log file data is used for a detailed audit of the
beam delivery. One limitation of log file data is the inherent uncertainty associated with
the recorded information. This uncertainty can impact the accuracy of dosimetric
evaluations and QA processes that rely on log files. Therefore, further studies are required
to mitigate these uncertainties, allowing log file data to be used more effectively and
confidently in accurate dosimetric assessments and QA in proton therapy.

1.6 Machine Learning models

Machine Learning (ML) is a subset of Artificial Intelligence (Al) that focuses on
developing algorithms and statistical models that enable computers to learn from and make
predictions based on data. According to Rahmani AM et al [34], ML is a field of study that
allows computers to learn without being explicitly programmed. Instead of being explicitly
programmed to perform a task, ML systems use patterns and insights derived from existing
data to improve their performance over time. ML involves training a model on a dataset,

allowing it to identify relationships and patterns. Once trained, the model can be applied to
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new, unseen data to make predictions or decisions. There are several types of ML, including

supervised learning, unsupervised learning, and reinforcement learning.

1.6.1 Supervised Learning

Supervised learning is an ML approach where models are trained on labelled data,
pairing input with the correct output to make accurate predictions on new data [35]. This
technique finds broad application across various fields, such as image classification, where
models categorize images into predefined groups, or spam detection, where systems
differentiate between spam and non-spam emails using labelled examples. In sentiment
analysis, models learn to classify text sentiment, while predictive maintenance uses labelled
sensor data to foresee equipment failures. Medical diagnosis models, trained on labelled
patient data, aid in disease identification, and speech recognition systems convert spoken
language into text. Fraud detection and house price prediction also benefit from supervised
learning, using labelled data to flag suspicious activities and estimate property values. In
radiotherapy, supervised learning enhances treatment accuracy, efficiency, and QA.
Models are trained to segment tumours and Organs-At-Risk (OARS) in imaging scans using
manually labelled data, optimise radiation distribution through dose prediction models, and
automate treatment planning based on historical cases. Additionally, supervised learning is
crucial in predicting patient outcomes and identifying potential errors in treatment delivery
by analyzing log files, ensuring precise and effective radiation delivery. These applications

streamline radiotherapy processes, leading to more accurate treatments and improved QA.
1.6.2 Unsupervised Learning

This method involves training models on data without labelled outcomes. The goal
is to identify patterns or groupings within the data, such as clustering similar data points
together [36]. Unsupervised learning is a powerful tool in radiotherapy, enabling the
discovery of patterns and relationships in data without the need for labelled examples. It is
particularly useful for clustering patient data based on characteristics like tumour type or
treatment response, which can inform personalized treatment strategies. In QA,
unsupervised learning helps detect anomalies in treatment delivery by identifying
deviations from expected patterns, enhancing safety. Additionally, dimensionality
reduction simplifies complex imaging data, making it easier to analyse and visualize.

Unsupervised learning also aids in feature extraction from medical images, identifying
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regions of interest that are crucial for treatment planning, ultimately contributing to more

effective and individualized radiotherapy.
1.6.3 Reinforcement Learning

In this type of learning, an agent interacts with an environment and learns to make
decisions by receiving rewards or penalties based on their actions. The agent aims to
maximise its cumulative reward over time [37]. Reinforcement learning is increasingly
valuable in radiotherapy for optimizing treatment strategies through trial and error. This
approach involves training models to make decisions by receiving feedback in the form of
rewards or penalties based on their actions. In radiotherapy, reinforcement learning can be
used to enhance treatment planning by learning from simulations to determine the most
effective radiation doses and delivery techniques. For instance, it can optimize dose
distribution by continuously adjusting parameters to minimize damage to healthy tissues
while maximizing tumour targeting. Additionally, reinforcement learning is applied to
adapt treatment plans in real time based on patient responses and evolving clinical
conditions. This method improves the precision and efficacy of radiotherapy by enabling

dynamic adjustments and personalized treatment approaches.
1.7 Research Problem

Proton beam therapy represents a cutting-edge advancement in radiotherapy,
utilizing the PBS technique that involves irradiating thousands of proton pencil beam spots
to target tumours precisely. The PBS system involves a highly sophisticated process of
beam production using a cyclotron, followed by precise beam selection and transport. This
is achieved through intricate components, including multiple quadrupole magnets for
focusing and bending magnets for beam steering. Additionally, the system incorporates
complex beam-tuning mechanisms and dosimeters to ensure precise control over beam
parameters. However, the intricate nature of the PBS technique necessitates systematic and
rigorous QA methods. Conventional PBS-QA methods are fraught with challenges. They
typically use dedicated dosimeters to measure critical parameters such as energy, spot size,
position, symmetry, and MU accuracy. These conventional methods are time-consuming
and labour-intensive, posing a significant burden on physicists and dosimetrists. The

conventional methods’ inherent complexity and the extensive effort needed highlight the
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need for more efficient solutions to streamline the machine QA and PSQA processes in

proton beam therapy.

In recent years, numerous studies have explored using log files in photon and proton
radiotherapy systems. Siochi et al. [38] utilised log files from a photon therapy linear
accelerator to automate the physics checks for plan delivery accuracy. Similarly, Rangaraj
D et al. [39] investigated the effectiveness of Linac log file data for analysing data transfer
and evaluating beam delivery accuracy across 914 patient cases. Many other studies [40-
41] have also assessed the potential of irradiation log file data for machine performance
evaluation. This approach significantly reduces the time required compared to traditional
measurement methods. Another use of log file data in photon therapy is to verify the
accuracy of MLC leaf positions and MU. Stell AM et al [42] and Chow V.U. et al. [43]
studied the accuracy of log file-recorded MLC positions and MU compared with the values
specified by the TPS. Their results are promising and contribute significantly to the
automation of quality assurance for Linac. Apart from the application in routine QA, the
log files are used PSQA in Linac. The MC algorithm computed the delivered dose using
the log file recorded MLC positions and MU information. The results are comparable to
the measurement-based PSQA [44,45]. The potential use of log files in Linac-based photon

radiotherapy is well-established for routine and patient-specific QA.

The log file data is also used in the PBS proton therapy to compare the spot position
and MU values with the TPS-specified values. A study by Li H et al [46] concludes that
the log file recorded spot position and MU values are accurate and precise enough to use
for routine QA. Later many studies used the log file recorded spot position and MU values
for evaluating the PBS beam delivery accuracy using the MC algorithm to calculate the
delivered dose and compare it with the planned dose for PSQA [47,48]. All the studies used
only spot position and MU information from the log file for dose evaluation. The spot size
and symmetry are also a critical parameter that can cause dose differences if the values
deviate from the baseline values. Also, there are no studies to mitigate the uncertainties
associated with log file data. A study by, Rana S et al [49] evaluated the dose difference
with different percentage differences in spot size. The spot size variation of more than 10
% from the baseline causes a significant dose difference. The evaluation of all spot
dosimetric parameters such as spot size, symmetry, position, and MU is important to ensure

machine beam delivery accuracy as well as patient treatment accuracy.
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The existing research on log file data in PBS proton therapy has primarily focused
on spot position and MU information, leaving significant gaps in the analysis of other
crucial spot parameters. Few studies have examined the accuracy of log file data or
explored its correlation with values measured by dedicated detectors. Additionally, there is
limited research addressing methods to mitigate uncertainties in log file data used for
machine and PSQA. These gaps hinder the reliability and effectiveness of log file data in

QA processes, which are essential for ensuring precision and safety in proton therapy.

To date, there has been limited development of a comprehensive method to analyse
the dosimetric accuracy of each spot used in patient treatment, particularly for spot size,
symmetry, MU, and position. This presents an exciting opportunity to establish a systematic
approach for evaluating these critical parameters, ensuring enhanced precision and

reliability in proton therapy

Contemporary research increasingly emphasises the potential of ML applications in
radiotherapy QA. ML models offer a promising solution by automating QA tasks in proton
therapy, including machine QA and PSQA, utilizing the vast amounts of data captured in
log files. By doing so, ML can reduce the time and manpower required for QA processes
while improving the accuracy of dosimetric predictions and addressing uncertainties.
Despite this potential, the use of ML in this context remains underexplored, presenting a
valuable opportunity to enhance treatment outcomes and streamline workflows in proton

therapy.
1.8 Objective of the study

This study focuses on implementing ML to automate QA protocols in PBS proton
therapy. The irradiation log file is a potential tool for developing various ML models to
automate machine QA and PSQA workflow. The study begins with the measurement of
spot dosimetric parameters and analysis of the corresponding log file data recorded in the
IBA Proteus Plus PBS proton therapy system installed at Advanced Centre for Treatment
Research and Education in Cancer(ACTREC), Tata Memorial Centre, Mumbai, India.
during beam irradiation and studies the correlation between the log file data and the data
measured using dedicated dosimeters. The scintillator detector measures proton spot

dosimetric parameters. After studying the correlation between the log file and detector
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measured data, the study develops ML models to predict PBS spot size in different axes
such as X, Y, major, and minor axes and also predict the relative positional error of each
spot. The ML models were validated using different statistical tools. The developed ML
models can predict spot dosimetric parameters using the irradiation log file as an input

parameter. The models can help to automate the routine QA of PBS spot measurement.

Another study objective is automating the PSQA workflow using ML models. The
PBS machine is capable of delivering proton beams in different gantry angles. A single
beam contains thousands of pencil beams with different energy and MU per spot. The
complex beam delivery accuracy was confirmed using PSQA. In the conventional method
of PSQA, the dose is measured at different depths for each beam, and the dose plane is
compared with the dose plane exported from the TPS. In this study, the ML-based
automated method was developed to alternate the PSQA. In the automated model, the ML
models predict the spot size of all spots used in the patient treatment beam and the spot
position, range, and MU information of each spot compared with TPS-specified values.
The in-house Python script is used to extract data from patient-specific irradiation files, and
the data is inputted into the ML models to predict spot parameters and evaluate the accuracy
of each delivered spot. This method needs only the irradiated beam log file as input data to

the model. No need for dedicated dosimeter measurement.

In summary, this study successfully demonstrates the potential of ML to automate
QA processes in PBS proton therapy. By utilising irradiation log files and dedicated
dosimetric measurements, the study develops and validates ML models capable of
accurately predicting spot dosimetric parameters. These models offer a significant
advancement in streamlining routine QA, reducing the need for time-consuming and
resource-intensive manual measurements. Furthermore, the study's automated approach to
PSQA presents a promising alternative to conventional methods, enabling efficient and
accurate verification of complex beam deliveries without the need for additional dosimetric
tools. These innovations pave the way for enhanced efficiency, reliability, and safety in

proton therapy, ultimately contributing to improved patient outcomes.
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Chapter 2- Literature Survey
2.1 History of Proton Therapy

The discovery of X-rays by Wilhelm Roentgen [1] and the discovery of
radioactivity by Henri Becquerel [2], both in 1895, laid the groundwork for the application
of radiation in cancer treatment. These ground-breaking discoveries paved the way for
technological advancements, leading to the development of high-energy linear accelerators.
By the mid-20™ century, these accelerators were utilizing X-rays in the 4-15 MV range for
external beam radiotherapy. In the 1990s, Dr. M. J. Zelefsky and his team at Memorial
Sloan Kettering Cancer Center advanced the field by developing IMRT [3]. IMRT
significantly improved the precision of radiotherapy by modulating the intensity of
radiation beams, enabling the delivery of higher doses directly to tumour tissues while
minimizing exposure to surrounding healthy tissues. This technique employs advanced
computational algorithms and sophisticated beam-shaping technologies to enhance
targeting accuracy. The subsequent introduction of Image-Guided Radiation Therapy
(IGRT) further refined this approach by incorporating imaging techniques to improve the
accuracy of radiation delivery, thereby reducing the risk of damage to normal tissues [4].

Despite these advancements, X-ray radiation inherently exhibits exponential
attenuation, which means the beam continues to deliver a dose to tissues as it exits the body.
While modern techniques have minimized this effect, exponential attenuation remains
challenging in optimizing radiotherapy protocols to balance efficacy and normal tissue
sparing. The advent of particle therapy, made possible by Ernest Lawrence's cyclotron
development in 1929 [5], introduced a new era in radiotherapy. Particle therapy, including
proton and heavy ion therapies, allows for the precise treatment of tumours with minimal
radiation to surrounding healthy tissues. Unlike X-rays, particles such as protons can be
engineered to release their maximum energy at a specific depth within the tissue,
significantly reducing the dose delivered beyond the tumour and sparing adjacent normal

tissues from unnecessary radiation exposure.

The early exploration of particle therapy began with John Lawrence and Robert
Stone, who used neutron beams produced by a cyclotron for cancer treatment. Between
1938 and 1943, they treated around 250 patients, but significant toxicities such as bone

necrosis and ulcers emerged, leading to the discontinuation of this approach [6,7]. The
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concept of proton therapy for cancer treatment gained momentum after a study by Robert
Wilson [8], highlighting the advantages of the proton beam's finite range and the Bragg
peak phenomenon over conventional X-ray therapy. The first clinical treatment using a
proton beam commenced at LBNL in 1954 [9], marking a significant milestone in the field.
LBNL also pioneered research on heavy ion therapy, further expanding the scope of particle

therapy.

In 1955, Sweden initiated proton therapy trials on rats and goats to study its
biological effects [10,11]. The initial patient treatments used the plateau region of the
proton beam rather than the Bragg peak, employing a crossfire technique. Subsequent
advancements led to the development of range shifters and modulation wheels [12]. The
Gustav Werner Institute in Sweden was the first to use a ridge filter for range modulation,
creating Spread-Out Bragg Peak (SOBP) for treatment [13]. In 1959, the Harvard Cyclotron
Laboratory (HCL) developed a cyclotron capable of producing protons with a maximum
energy of 160 MeV, sufficient to penetrate up to 16 cm in water [14]. Preclinical studies
began with this system, and in 1961 [15], Massachusetts General Hospital (MGH)
collaborated with HCL to start clinical proton therapy trials, initially focusing on treating
pituitary tumours using a single scattering technique. During the 1970s, double-scattering
proton therapy was developed at HCL, enabling the treatment of larger targets [16].
However, the passive scattering system had limitations, such as needing patient-specific

customized range shifters and collimators.

In 1961, Larsson et al. [17] explored using magnets to deflect the proton beam. Still,
it wasn't until 1977 that Leemann and colleagues [18] developed a beam scanning technique
for three-dimensional modulation of the pencil beam. This innovation led to various
scanning techniques, such as spot-by-spot and continuous scanning. Throughout the 1980s,
extensive studies on different scanning techniques were conducted at LBL, focusing on
advancing passive scattering and pencil beam scanning to enhance the utility and efficiency
of proton therapy. The first fully hospital-based proton therapy facility was established at
Loma Linda University Medical Center (LLUMC) in 1990 [19], followed by installing the
first commercial proton therapy system at MGH [20].

Since 2000, the global installation of commercial proton therapy systems has
expanded significantly, with over 300,000 patients treated by 2024 [21]. The PBS system
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has become the dominant method for proton beam delivery. It is known for its precision in
dose distribution and ability to target tumours with minimal impact on surrounding healthy
tissues. Recent advancements in proton therapy systems include the development of
superconducting synchrocyclotrons and compact gantry designs, which have significantly
reduced the size and cost of these systems [22]. Innovations like multi-room proton therapy
centres and Flash therapy delivering ultra-high dose rates in milliseconds are being
explored to enhance treatment efficiency and outcomes [23]. These -cutting-edge
developments aim to broaden the accessibility and clinical application of proton therapy,
making it more affordable and available to a broader range of patients and healthcare

facilities.
2.2 Proton Therapy in Clinical Practice

Proton beam therapy offers many clinical applications, particularly in treating
paediatric tumours and radio-resistant cancers. Its effectiveness stems from unique
advantages, such as the sharp dose fall-off after the Bragg peak, which allows for precise
targeting of tumours while sparing surrounding healthy tissues. The biological benefits

associated with high RBE and LET effects further enhance its therapeutic potential.

However, initial enthusiasm for proton therapy, driven by these promising
characteristics, has been moderated by clinical outcomes, suggesting that early expectations
may have been overly optimistic. Challenges such as the sensitivity of proton dose
distributions to anatomical changes, assumptions about RBE, and the ongoing evolution of
treatment planning and delivery technologies have underscored the complexities of fully
realizing its potential. Despite the high costs and currently limited evidence of clear clinical
superiority, ongoing research is uncovering protons' distinct biological and clinical effects,
highlighting the need to deepen our understanding and apply these insights to maximize

therapeutic outcomes.

The children are the most beneficial group of patients because of the lower normal
tissue irradiation. A study by Jimenez RB et al. [24] concluded that proton therapy leads to
better survival rates and improved tumour control in paediatric patients treated for
Medulloblastoma. A similar study by Ladra MM et al. [25] evaluated the Overall Survival
rate (OS) and Local Control rate (LC) of children with rhabdomyosarcoma. The 5-year

results show that the OS and LC are similar and comparable to photon therapy studies, but
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the acute and late toxicity rates are less with proton therapy. So, proton therapy may be a
safer option for children. Cranio Spinal Irradiation (CSI) is the treatment that irradiates the
brain and spine [26]. As the total irradiation area is high, the photon therapy leads to
significant doses to many normal tissues such as the eye, kidneys, lungs, bowel, heart, etc.
The proton therapy for CSI is considered the most beneficial use of protons. Many studies
reported the benefit of proton therapy over photon therapy. Howell et al. [27] compared the
dosimetric data of proton and photon treatment plans for 18 patients aged 2 to 18 who
underwent CSI. The results indicated that all patients experienced better normal tissue
sparing with proton therapy while maintaining consistent tumour dose coverage. Many
studies compared the dosimetric benefit of proton therapy over photon for CSI cases, and

all reported less dose to normal tissues than photon therapy [28-30].

Another group of tumours that benefit significantly from proton therapy includes
skull base and Sinonasal tumours, which are often located near critical structures such as
the spinal cord, brain, brainstem, and optic pathways. These tumours typically require high
doses of radiation for effective treatment. However, in photon therapy, the ability to
increase the dose is constrained by the maximum allowable dose for nearby normal tissues.
In contrast, proton therapy allows for dose escalation due to the sharp dose fall-off
characteristic of protons, enabling higher doses to be delivered to the tumour while
minimizing exposure to surrounding healthy tissues [31,32]. Proton therapy has
demonstrated potential for treating brain tumours, particularly by reducing the risk of
adverse effects such as cognitive dysfunction. A study by Hauswald H et al. [33] on
nineteen patients with low-grade glioma reported minimal toxicities with proton therapy.
A key study by Shih et al. [34] presented findings from a prospective trial involving patients
with grade Il gliomas, evaluating cognitive function and quality of life after receiving
proton therapy. The study revealed that cognitive function metrics either remained stable

or showed improvement compared to baseline levels.

In head and neck tumours, the dose to the midline structures and contralateral
structures, such as parotids, oral cavity, submandibular glands, and oral cavity, etc., are
significantly reduced using proton therapy compared to photon therapy [35]. A study by
Manzar et al. [36] reported that patients treated with proton therapy for oesophageal cancer
experienced less use of feeding tubes, as well as reduced cough and dysphagia, compared

to those who underwent IMRT. A similar result was reported by Hutcheson et al. [37], such
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as a 20 % reduction in the use of feeding tubes in patients treated with protons compared
to photons for head and neck treatment sites. The chordomas and chondrosarcomas are
radio-resistant tumours and require high radiation doses. In such cases, the impact of the
proton is high in sparing normal tissues. A study by McDonald et al. [38] reported the LC
and OS of patients treated with protons for clival chordomas. A report from the PSI reported
the 10-year disease-free survival of patients treated for chordomas and chondrosarcoma
[39].

Proton therapy is challenging for treating moving tumours such as lung, pancreatic,
and liver tumours. The heterogeneity in the tissue, along with movement during treatment,
can cause large deviations from the prescribed dose. So, treating moving tumours requires
more attention, and the treatment planning system should have a method to address such
issues. [40-41]. The normal tissue toxicity rate is less in lung tumours treated with protons,
as seen in all other treatment sites. A report by Nguyen QN et al. [42] found that only 1.4
% of proton therapy patients developed grade 3 pneumonitis. All previously discussed
clinical studies have shown significant differences in early and late toxicities. Still, the OS
and LC rates of proton therapy are almost similar or comparable to those of photon therapy.

In conclusion, proton therapy has emerged as a highly effective treatment modality,
offering significant benefits in reducing both early and late treatment-related toxicities
while maintaining comparable or even superior outcomes to conventional therapies. Its
precise targeting capabilities, particularly in challenging tumour locations near critical
structures, make it an invaluable tool in modern oncology, providing a promising option

for improving patient quality of life and long-term survival.

2.3 The Role of Log Files in Radiotherapy Quality Assurance

In radiotherapy, log files are digital records that capture detailed information about
the treatment delivery process, including machine settings, dose delivery, patient
positioning, and errors or deviations. These files are vital for QA, ensuring that radiation
therapy is delivered precisely and safely, and identifying potential issues during treatment.
The application of log files for troubleshooting and QA originated with linear accelerators,
which provide essential data on the position and speed of the MLC during each beam
segment, the MU delivered at each control point, and the gantry and collimator angles. This

information is used to analyze beam delivery accuracy, conduct audits, and perform
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machine- and PSQA. Log files are equally valuable in proton therapy, particularly in PBS
systems. They record critical data such as spot position, spot size, selected range, beam
current, scanning magnets set points, MU, and the number of spots, which can be used for

patient-specific and machine QA.

Modern radiotherapy systems include numerous electronic and automated
components for data transfer and beam delivery, resulting in extensive log files that record
many data points. Manually verifying each point—such as the positions of the MLC at each
control point or the speed of MLC movement during delivery—can be challenging. As
treatment complexity increases, the volume of parameters to be checked also rises, making
manual verification time-consuming and prone to errors. Recently, computer-assisted tools
have been introduced to automate this process, enhancing efficiency and accuracy. Using
log files and in-house scripts, Siochi et al. [43] automated the physics checks of treatment
plans and delivery data, significantly reducing manual errors. Another study by Rangaraj
D et al. [44] utilised Varian radiotherapy Linac Dynalog files to analyse data from 914
patients, assessing the integrity of plan transfer and beam delivery. They identified 14
errors, all of which were linked to human intervention, such as data modification during
plan transfer. The study concluded that log file-based data analysis is a robust and efficient
method for detecting errors in the process. Stell AM et al. [45] studied log files from 91
step-and-shoot IMRT patient plans and found that segment MU errors depended on dose
rate. They reported a maximum segment MU error of 1.8 MU at a dose rate of 600 MU/min
and 0.5 MU at 100 MU/min. Chow V.U. et al. [46] utilised trajectory log files to evaluate
the delivery accuracy of Stereotactic Body Radiation Therapy (SBRT) in a study involving
120 patients. Their analysis focused on dose indices, MLC positions, and gantry angles.
The study reported a maximum MLC position deviation of 0.3 mm and a gantry angle
difference of less than 0.2 degrees. Based on their findings, they recommended using log

file-based analysis for SBRT to replace patient-specific QA.

The conventional technique for patient-specific QA in IMRT and VMAT plans
involves measurement-based analysis. For instance, dose fluence is typically measured
using ionisation array chambers and then compared with the TPS data. However, with the
introduction of MC dose algorithms for independent dose calculation using log files, many
centres have transitioned to MC-based patient-specific QA utilizing log files. A study by

Luo W. et al. [47] used a MC dose calculation engine to reconstruct the dose distribution
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for eight prostate patients treated with IMRT using log files. The results indicated a mean
leaf position error of 0.2 mm, which led to a 1 % dose difference in the target. The accuracy
of the MC calculation algorithm in Rapid Arc plans was evaluated by Teke T. et al. [48],
demonstrating its high accuracy in these plans. In addition to dose calculation accuracy and
dose delivery evaluation, log files have been used to analyse plans involving moving
targets. By synchronizing log file data with respiratory tracking data, the MLC positions
and MU for each breathing amplitude can be accurately determined, allowing for precise

dose reconstruction using MC.

Given the complexity of PBS beam delivery, which involves thousands of spots and
multiple energy layers, routine QA cannot comprehensively analyse all the data using
detector measurements alone. Instead, routine QA focuses on assessing the accuracy of
selected energy spot dosimetric parameters, with more extensive verification of energy spot
data conducted during monthly and yearly QA. However, by analyzing log file data, a
broader range of energy spot parameters can be evaluated, facilitating machine
performance assessment and patient-specific QA using MC dose calculations. The PSI has
been using log files as a tool for QA since 2009 [52]. Later, the MD Anderson Cancer
Centre also studied [53] the utility of irradiation log files from the PBS system for
evaluating beam delivery accuracy. They examined the correlation between the log file-
recorded spot positions and each spot's MU. The positional accuracy of each spot was
measured using film and compared with the values recorded in the log files, finding that all
values were within 0.5 mm. Additionally, the MU accuracy was compared between the log
file-recorded values and the planned MUs, revealing a precision of 0.1 %. After confirming
the accuracy of the log file-recorded spot positions and MU, physicists began using log file
data to reconstruct the dose with an independent MC dose engine. This method has emerged
as a potential tool for patient-specific QA in PBS proton therapy by leveraging the recorded
spot positions and MU information. In 2015 Meier G et al. [54] developed an independent
dose calculation system for dose calculation using log file information. Belosi MF et al.
[55] calculated the dose in the patient CT scan using information from log files to evaluate
dose differences at the anatomical level. A similar study on line scanning proton therapy
was conducted by Jeon C et al. [56]. Using log file data, they used the Tool for Particle
Simulation (TOPAS) MC dose engine for dose calculation. Another study by Chung K et
al. [57] investigated line scanning accuracy by comparing film measurements with log file

data, finding that the results were within 1 mm. Meijers et al. [58] utilized PBS proton

37



Chapter 2

therapy log file data and patient breathing patterns to reconstruct 4D dose distributions

based on weekly 4D computed tomography scans.

In conclusion, the use of log files in proton therapy, particularly for PBS systems,
has become a crucial tool for machine QA and patient-specific QA since its introduction in
2009. These log files have primarily been used to verify only the spot position and MU
accuracy, facilitating MC-based dose calculations for independent dose verification.
However, uncertainties and potential errors in log file data, as highlighted by Toscano S et
al. [59], emphasize the need to fully understand these limitations before relying on this data
for QA purposes. The importance of spot size and symmetry in dose delivery accuracy is
significant; for instance, Rana S et al. [60] demonstrated that changes in spot size by 10 %,
15 %, and 20 % resulted in notable dose variations in the target. Consequently, accurately
addressing spot size, symmetry, position, and MU is critical for comprehensive QA and
PSQA.

Existing literature has focused predominantly on spot position and MU information
from log files. There is a lack of studies critically analyzing the accuracy of spot parameters
recorded in log files or investigating their correlation with values measured by dedicated
detectors. Additionally, research on solutions to mitigate uncertainties in log file data used
for machine QA and patient-specific QA is limited. Addressing these research gaps is
essential for enhancing the reliability and effectiveness of log file data in QA processes,

ultimately improving the precision and safety of proton therapy.
2.4 Machine Learning-Driven Quality Assurance in Modern Radiotherapy

The ML can transform various processes and workflows in radiation oncology,
enhancing patient care quality and efficiency [61]. It can automate radiotherapy contouring,
planning, QA and data analysis workflow. The other advantage of the ML model is that it
can analyse complex data and accurately predict or extract meaningful patterns. The most
developed ML model in radiotherapy is the auto-contouring system [62]. Nowadays, ML-
based auto-contouring systems are commercially available, helping to reduce time, improve
efficiency, and minimize errors in the contouring workflow of radiotherapy. Routine QA
of Linac and proton therapy systems generates a large amount of data often used only once.
ML models can leverage this big data to learn from past information and apply these

insights to enhance future QA and analysis.
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In radiotherapy, popular ML models include linear regression, lasso, ridge
regression [63], and ensemble methods such as Random Forest and Gradient Boosting.
Neural network models, like Convolutional Neural Networks (CNN) and Artificial Neural
Networks (ANN) [64], are also widely used. The selection of a specific algorithm depends
on the characteristics of the data. In Li et al. [65] study, 5-year daily QA data from a Linac
was used to predict beam symmetry. The researchers developed an ANN-based model with
one hidden layer of six neurons and two input parameters. The ANN model demonstrated
superior prediction accuracy compared to the Autoregressive Integrated Moving Average
(ARIMA) statistical model. A study by Valdes G et al [66] used Poisson regression and
lasso regularisation to predict the IMRT QA passing rate using different plan matrices. This
model helped predict the passing rate before the actual measurement-based QA. Interian Y
et al. [67] extended the study using CNN models to predict the gamma passing rate using
a fluence map as input to the model. A similar study by Lam D et al. [68] used 182 IMRT
QA measurements obtained through portal dosimetry and plan metrics to predict gamma
passing rates. The introduction of log files helped the physicists use the log file data and
ML models to predict the MLC leaf positional and dose delivery errors. In 2016, Carlson
JN et al. [69] were the first to use delivery log files and ML models to predict MLC
positional errors. They developed a supervised ML model and evaluated the gamma passing
rate using the predicted MLC leaf positions. This resulted in a higher gamma passing rate
than the measurement-based gamma analysis. Osman A F et al. [70] introduced the
application of a feed-forward ANN model to predict MLC positional errors. They utilised
400 log files and 14 features from the treatment plan to predict MLC leaf positions during
beam delivery. The ANN model demonstrated good prediction accuracy, with a maximum
Mean Squared Error (MSE) of 0.0001 mm. Another application of ML is in auto-planning
algorithms that utilize deep learning networks [71-72]. These methods involve training
deep-learning models on a database of previous plans to predict dose distribution for new
plans. The primary deep learning algorithms employed for auto-planning are U-Net [73]
and Generative Adversarial Networks (GANS).

The application of ML models in proton therapy started in passive scattering
techniques for predicting output factor and MU of the beam using range, modulation and
field size as input parameters [74]. The study used Gaussian process regression (GPR) and
shallow neural network(SNN) deep learning models. Li et al. [75] employed both feed-

forward and recurrent neural network models to predict the range and dose in proton
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therapy by utilizing data from proton-induced positron emitters. There are only a few
studies that have applied ML models to the passive scattering technique. However, with
the advent of PBS techniques and the availability of irradiation log files, few studies have
utilized ML models to predict spot dosimetric parameters based on these log files. Dominic
Maes et al. [76] demonstrated the application of ML techniques to accurately predict
delivered PBS spot positions and MU by integrating irradiation log file data into the
training dataset. The study utilised TPS and log file data for model development but did
not compare the measurement data with the log file data. Kouwenberg J et al. [77]
employed an ML model, specifically a Gaussian naive Bayes classifier, to classify which
patients require Intensity Modulated Proton Therapy(IMPT).

Using ML models with log file data in PBS proton therapy systems is a promising
technique for automating the process, including machine QA and PSQA. This approach
leverages the enormous data captured in log files to enhance the accuracy and efficiency of
QA procedures, potentially leading to more reliable treatment outcomes and streamlined
workflows. In proton therapy, the application of ML using log file data is very limited. ML
models can be used to predict dosimetric parameters with high accuracy and to mitigate the

uncertainties associated with log file data.
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Title: Measurement and Evaluation of Spot Dosimetric Parameters Using a
Scintillator Detector and Comparison with Irradiation Log File Data.

3.1 Introduction

The accuracy of PBS proton therapy is contingent upon the precise delivery of each
spot by the energy, MU, position, and size specified by the TPS. Any deviation in these
parameters during beam delivery can result in discrepancies between the dose calculated
by the TPS and the actual dose delivered to the patient [1]. To ensure this accuracy, regular
dosimetric assessments are performed to measure critical spot parameters, including spot
size, position, symmetry, energy, and absolute dose. The AAPM TG224 [2] provides
detailed guidelines for daily, weekly, monthly, and annual QA protocols in PBS proton
therapy. A deviation in spot size greater than 10 % from the baseline value can lead to
significant discrepancies in the dose delivered to the tumour region [3], while a spot
position deviation exceeding 1 mm can also compromise dose accuracy [4]. Consequently,
routine monitoring and analysis of spot parameters are critical for ensuring accurate dose
delivery in PBS proton therapy. Given that spot size varies with energy, it is essential to
measure these parameters across a range of energies and gantry angles to account for

potential variations.

Conventional spot measurements are generally conducted using specialized
scintillation detectors or film-based systems. In contrast, the proton therapy machine
monitors the accuracy of spot delivery specifically position, size, and MU using ionisation
chambers positioned within the treatment nozzle. These chambers continuously record and
verify spot parameters during beam delivery, triggering an interruption of the beam if any
parameter exceeds the manufacturer’s specified tolerance limits. The recorded data is then

stored in irradiation log files for further analysis.

Log files are digital records that capture various machine parameters during beam
delivery, including machine settings, gantry position, table values, and any errors that
occur. In PBS proton therapy, irradiation log files contain detailed dosimetric information
for each spot. However, routine QA procedures typically focus on a limited number of spots
at specific energy levels and gantry angles, which may not fully represent the accuracy of
all spots delivered during patient treatments. Since treatments can involve thousands of

spots across a wide range of energies, analyzing log file data allows for a more
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comprehensive evaluation of spot accuracy [5,6]. A study by Siochi et al. [7] demonstrated
that log file data can serve as a valuable tool for machine QA, especially when data
extraction and analysis are automated using in-house scripts. However, research by
Toscano et al. [8] indicated that PBS log files may be subject to uncertainties and potential
errors. Consequently, it is essential to understand these uncertainties before applying log
file data directly in clinical practice. To ensure accuracy, log file data must be validated
against measurements from dedicated dosimetric tools, such as scintillation detectors,

which remain the standard for measuring spot parameters.

This chapter highlights the importance of analysing log file data and examines the
discrepancies between spot parameters recorded in log files and those measured by
dedicated dosimeters. It describes the process of measuring spot parameters with a
scintillation detector, extracting corresponding log file data, and performing a comparative
analysis to assess the accuracy and clinical relevance of log file data for both machine and

patient-specific QA.
3.2 Materials and Method

3.2.1 Five-spot Pattern

Spot measurements were performed on an IBA Proteus Plus PBS proton therapy
system (Louvain-la-Neuve, Belgium) with three rotating gantries installed at the National
Hadron Therapy Centre, ACTREC, Tata Memorial Centre, Mumbai. The Study was
conducted after the ethical committee clearance from D. Y. Patil Education Society
(Deemed to be University), Kolhapur (DYPMCK/11/2022/1IEC) and approval from
ACTREC for data collection. The system is capable of delivering a proton beam with
energies from 226.2 MeV to 70.18 MeV, corresponding to water-equivalent ranges of 32.02
g/lcm2and 4.1 g/cmz, respectively. The spot size, defined as one standard deviation or sigma
(o) of the Gaussian distribution of the spot profile, varies with energy; the manufacturer
specifies a spot size of 2.8 mm for 226.2 MeV and 6.5 mm for 70.18 MeV, measured in air
at the isocentre plane.

This chapter evaluates the accuracy of spot dosimetric parameters of different
energies including analysis of spot size and position along the X and Y-axis and the spot
symmetry. Measurements were performed across all energies with a water-equivalent range

interval of 1 g/cm?, spanning the lowest range of 4.1 g/cm? to the highest range of 32.0
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g/lcm?, and for 12 gantry angles at 30° intervals. A 5-spot pattern was created for
measurement, placing one spot at the centre and one in each quadrant of the Cartesian
coordinate system, with coordinates at (0, 0), (127.8 mm, 127.8 mm), (-124.8 mm, 130.9
mm), (127.7 mm, -124.8 mm), and (-127.8 mm, -127.8 mm), as shown in Figure 3.1. Six
month measurements resulted in 1800 5-spot patterns, encompassing a total of 9000
individual spots. All the measurements are done using a dedicated scintillator detector
called Lynx2D. The baseline spot size values specified by IBA for all energies are presented
in Table 3.1. These baseline spot size values are the same for a particular energy or range
across all gantry angles and are identical in the X and Y directions. The measured spot size
values were compared against these baseline values to evaluate accuracy. The MU per spot
of each energy is selected in such a way that the Lynx2D detector should measure 70 % -
90 % signal. So that the scintillator will not reach the saturation level during measurement.
The values of MU per spot for each energy are also tabulated in Table 3.1. In addition to
spot size, the position of each spot was measured and tabulated to evaluate the accuracy of

spot position.

Measurement setup errors heavily influence the accuracy of measured spot position
values. Each spot’s relative positional error values were calculated to overcome these
dependencies. This approach aimed to minimise the impact of setup errors on spot position
values by assessing the deviation of each spot’s position from the intended irradiation
position. The relative positional error values were calculated for each spot by subtracting
the measured spot position from the measured central spot position and further subtracting

this result from the actual set value of each spot.
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Figure 3.1: The Schematic diagram of the 5-spot pattern. Representing spot in each

Cartesian coordinate.
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Table 3.1: Tabulated the baseline spot size values used for this study. Tabulated the baseline

spot size value of each range and the MU per spot of each spot.

Range (g/cm?) Energy (MeV) | Baseline spot size (mm) | MU per spot used for
the measurement
(MU)
4.10 70.18 6.5 1.3
4.50 73.92 6.32 1.3
5.50 82.69 5.9 1.3
6.50 90.80 55 1.3
7.50 98.40 5.28 0.75
8.50 105.58 4.89 0.75
9.50 112.42 4.69 0.75
10.50 118.97 4.52 0.75
11.50 125.26 4.36 0.75
12.50 131.34 4.21 0.75
13.50 137.23 4.08 0.6
14.50 142.94 3.96 0.6
15.50 148.50 3.84 0.6
16.50 153.91 3.74 0.5
17.50 159.20 3.64 0.5
18.50 164.37 3.55 0.4
19.50 169.44 3.47 0.4
20.50 174.40 3.39 0.4
21.50 179.27 3.32 0.4
22.50 184.05 3.26 0.4
23.50 188.76 3.2 0.4
24.50 193.39 3.14 0.35
25.50 197.94 3.09 0.35
26.50 202.43 3.04 0.35
27.50 206.86 2.99 0.35
28.50 211.23 2.95 0.35
29.50 215.54 2.9 0.35
30.50 219.79 2.86 0.35
31.50 224.00 2.82 0.3
32.00 226.08 2.8 0.3

3.2.2 Lynx 2D detector

The Lynx 2D detector, optimized for PBS spot measurements in proton therapy,

uses a gadolinium-based scintillator to convert radiation into visible light. This scintillator,

known for its high sensitivity and efficiency, enables the detection of fine details within
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each proton spot. Combined with a high-resolution Charge Coupled Device (CCD) camera,
the system captures precise two-dimensional dose distributions with a 0.5 mm pixel
resolution over a 30 cm x 30 cm active area. This design allows the Lynx 2D to measure
critical PBS parameters such as spot size, position, and intensity across high-energy proton
beams, including up to 250 MeV [9]. Integrated software processes the data in real-time,
supporting adaptive and automated QA workflows to maintain the accuracy and stability
of proton beam delivery. Figure 3.2 shows the Lynx2D detector and schematic diagram of

the CCD camera and scintillator assembly.

_ Proton beams

Scintillator screen
-

260

¥ Mirror

Figure 3.2: Lynx 2D Detector and graphical representation of the spot measurement

process. [5].

3.2.3 Spot Measurement

The Lynx 2D scintillator detector was securely mounted onto a dedicated holder
designed to attach to the machine gantry head, referred to as the nozzle. This holder ensures
proper alignment of the Lynx 2D detector with the gantry head, facilitating the
measurement of spot parameters at various gantry angles. Accurate detector alignment is
crucial for reliable measurements; therefore, the alignment was verified and corrected
before data acquisition. To verify alignment, a plumb attached to a string was used to detect
and correct any tilt in the detector. The string, when properly aligned with the plumb, hangs
perpendicularly. Kilo-voltage (kV) imaging of the string was employed to quantify and
rectify any tilt. Adjustments were made until the tilt was reduced to less than 0.3 mm per

metre. Figure 3.3 illustrates the gantry-mounted Lynx 2D detector with the plumb attached.
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Lynx 2D detector

Figure 3.3: The Lynx2D attached to the gantry head using the Lynx holder. The levelling

plumb is attached to level the detector.

Once the alignment was confirmed, the 5-spot pattern (Figure 3.1) was irradiated
for each energy and the spot parameters were analysed using MyQA Fast Track software
(IBA Dosimetry GmbH, Germany). The PBS spots exhibited an elliptical shape (Figure
3.4), necessitating the measurement and analysis of spot size along both major and minor
axes, in addition to the X and Y directions. Spot size accuracy was assessed by evaluating
spot dimensions in these directions. Spot symmetry was also calculated along the X-Y axes
as well as the major-minor axes using Equations 3.1 and 3.2. Furthermore, the relative
positional errors were compared against the reference value. All values are compared

against the tolerance values.

Spot 2D symmetry(%) _ (major axis spot size—minor axis spot size) X100 (31)

(major axis spot size+minor axis spot size)

(X—axis spot size—Y—axis spot size)

XY symmetry (%) = X100 (3.2)

(X—axis spot size+Y—axis spot size)
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Figure 3.4: PBS spot shows an elliptical shape. (a) represents the elliptical shape of the
spot, (b) Line plot of the Gaussian distribution of the spot.

3.2.4 Nozzle and Beam Monitoring

The irradiation log file in the PBS proton therapy system comprehensively records
all parameters associated with beam delivery, including spot parameters, machine settings,
and beam tuning details. The IBA Proteus Plus PBS system employs a specialised nozzle
head for precise beam control and monitoring. The schematic representation (Figure 3.5)
of the IBA Proteus Plus PBS nozzle head illustrates the beam path and associated
components. Initially, the proton beam passes through IC1, which comprises 12 copper
strips aligned along the X and Y directions, with a spacing of 3.5 mm between adjacent
strips. IC1 primarily verifies the positional accuracy of each spot. The beam then passes
through a quadrupole magnet, which maintains alignment along the central axis, ensuring

stability before reaching the scanning magnets.
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Figure 3.5: The IBA Proteus plus dedicated PBS nozzle schematic representation.

*|C2-3- lonisation chamber.

The nozzle has two scanning magnets called X and Y scanning magnets, which
deflect the pencil beam along the X and Y axes. The deflection currents of these magnets
vary based on the desired spot positions and the beam energy. After deflection, the beam
exits the nozzle and encounters another ionisation chamber called 1C23 (Figure 3.6 (a) and
3.6 (b)). This chamber comprises two ionisation layers, with a total of 64 copper strips
spaced 5 mm apart. The IC23 system records the position and size of each spot by
measuring the charge collected across its strips. Additionally, IC23 is equipped with a dose
pad, which accumulates charge during spot delivery. The MU for each spot is directly
proportional to the charge collected in 1C23, where a charge of three Nano coulombs
corresponds to 1 MU in standard pressure and temperature. The 1C23 is a vented chamber.
The log file generated by the system encapsulates critical beam irradiation data, including
spot positions and sizes measured by IC1 and 1C23, scanning magnet currents and voltages,
beam current, spot-specific charge collected by 1C23, gantry angles, and set ranges.
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{ Accessary drawer

Figure 3.6: (a) IC23 assembly in the nozzle. (b) 1C23 chamber schematic representation.
3.2.5 Log file generation

The beam log file plays a critical role in proton therapy delivery, ensuring accurate
monitoring and control of beam parameters. A typical treatment plan consists of multiple
energy layers, each containing numerous spots. The TPS defines the spot positions at the
isocentre and assigns MU to each spot. These parameters, including the energy of each
layer, spot positions, and MU per spot, are organised into a tabulated format and exported

to the Oncology Information System (OIS), Mosaiq (Elekta Pvt Ltd), as control points.

For each energy layer, the log file generates three primary Comma-Separated Value
(CSV) files: a specification file containing planned parameters, a tuning pulse data file, and
an irradiation data file. Additionally, a file detailing the beam configuration is created. The
input to the specification file is the data from the Mosaiq, using this data, the IBA beam
delivery system generates the beam specification file. The system calculates the range for
each energy layer based on Equation 3.3 and translates the TPS-defined spot positions at
the isocentre into corresponding positions at the 1IC23 level for verification during delivery.
The specification file records these 1C23-level spot positions, along with other critical
parameters such as the unique identification number for each spot, the intended charge for
the specified MU, energy-specific scanning magnet currents and voltages, range of each

spot and beam currents for each spot.

Range (C"ﬁ) = exp[(a = In(Energy)3 + b * In(Energy)? + c x In(Energy) d] (3.3)
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Energy in MeV. The coefficients a=-0.0133, b=0.15248, ¢=1.2193, and d=-5.5064

The specification file serves as the reference for real-time monitoring, while the log
file provides a detailed record of beam irradiation data during delivery. Any deviation from
the predefined tolerances specified in the beam specification file triggers an immediate
beam interruption, ensuring precise and safe proton therapy. The tolerance for spot size,
position and MU are given in Table 3.2. In Table 3.2, the comparison of AAPM TG224

recommended tolerance values with the log file tolerance provided.

Table 3.2: Comparison of AAPM-TG224 Recommended Tolerances for Spot Parameters
and IBA-Proteus Plus Log File Tolerances for Triggering Beam Interruption

Spot Size Spot Position Monitor Unit | Spot symmetry
X-Axis Y-AXis (MU)
AAPM- 10 % of 1 mm 1 mm 2% 10 %
TG224 baseline
recommended | spot size
Tolerances.
Log file 1 mm 2.03 mm* | 2.25 mm* 2.5% Not specified
tolerances. in the log file.

* The values are given for the 1C23 level.
3.2.6 Tuning Pulse

The IC23 continuously monitors the spot position and MU for each spot during
proton beam delivery. To ensure positional accuracy within each energy layer, the system
employs a mechanism known as the tuning pulse. In this process, a spot near the beam's
central axis is selected, and a minimal dose of 0.02 MU is delivered to that spot. The IC23
records the spot’s position and compares it with the intended position, calculating the
deviation or error in the spot position within the layer. This positional error is corrected by
assigning an offset value to the scanning magnets for the specific energy layer.
Consequently, the corrected offset ensures accurate positioning of all subsequent spots in
that layer. This tuning pulse process is performed for every layer of beam delivery to
maintain precision across all spots. The log file captures the offset values recorded during
each tuning pulse, and during log file analysis, these offset values are extracted to determine

the actual delivered positions of the spots accurately.
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3.2.7 Data extraction from log file

Log file data extraction is conducted using an in-house Python script designed for
the systematic processing of beam irradiation data. The script reads and processes all the
log files including beam configuration files, specification files, tuning pulse files and

irradiation files to facilitate comprehensive analysis and quality assurance.

The script begins by reading the beam.csv file, which records general beam
irradiation data, including the gantry name, temperature, and pressure during delivery.
Using this information, the script calculates the temperature and pressure correction factor
(K) to adjust the temperature and pressure change inside the 1C23 chamber for each spot.
The correction factor is calculated using Equation 3.4. One MU corresponds to 3nC of
charge under standard temperature and pressure (STP) conditions. The 1C23 measured

charge is multiplied by the factor K and calculates the MU of each spot.

_ (T+2732) PO

~ (To+273.2) P (34)

K is the temperature and pressure correction factor. T is the temperature of the IC23 in
degree (standard temperature 22°c) and P is the pressure of the air in the IC23 in mbar. The
Po is the standard pressure of 1013.2 mbar.

Next, the script processes the irradiation.csv file, which contains detailed
information for all delivered spots, including spot positions at IC23 and IC1, spot sizes at
IC1 and 1C23, charge collected at 1C23, scanning magnet currents and voltages, beam
current, set range, degrader feedback, and tuning pulse offset values. The tuning pulse
offset is subtracted from all spots to determine the actual delivered positions at 1C23.
Additionally, the script identifies the tuning pulse spot number and adds its charge to the

corresponding spot.

The script also reads the specification file for each layer, which contains the planned
parameters such as the number of spots, intended positions, sizes, energy of each spot and
charges. It tabulates these values and also calculates the minimum and maximum allowable

values based on predefined tolerances specified in Table 3.2.
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Finally, the script consolidates data from all sources to create a detailed tabulation
of spot information for each energy layer. Additionally, measured data from the Lynx 2D
scintillation detector, including spot sizes along the X and Y axes, major and minor axis
spot sizes, and spot symmetry, is tabulated and compared with the corresponding values

recorded in the log file.

3.3 Results
3.3.1 Five-Spot measurement

The smallest spot size measured in the scintillator was 2.69 mm in the x direction
and 2.66 mm in the y direction for the energy 226.2 MeV, while the largest spot size
measured 6.59 mm in the x direction and 6.71 mm in the y direction for the 70.18 MeV.
Similarly, the minimum major axis spot size was 2.765 mm for 226.2 MeV, whereas the
maximum major axis spot size was 6.663 mm for 70.18 MeV. The minimum for the minor
axis spot size was 2.548 mm for 226.2 MeV, and the maximum was 6.48 mm for 70.18
MeV. The maximum relative positional error along the X-axis was -0.85 mm and 0.86 mm
for relative positional error on the Y-axis. The statistics of measured data are given in Table
3.3. The maximum 2D symmetry was 9.5% and XY symmetry was 3.9%.
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Table 3.3: The statistics of all Lynx2D scintillator measured spot parameters.

Stand 25th 50th 75th
Mini | Maxi | Mean | ard Percent | Percentil | Percenti
mum | mum Devia | ile (1% e le(3™
tion Quartil | (Median) | Quartile
e) )
Range (gm/cm”2) 4.1 32.0 18.0 8.6 10.5 18.0 25.5
Gantry angle 0.0 330.0 | 165.0 | 103.6 82.5 165.0 247.5
(Degree)
Measured X -127.3 | 1296 | 1.1 | 1122 | -1234 -0.7 126.5
position(mm)
Measured Y -132.4 | 1283 | -1.7 | 1143 | -128.0 -0.7 124.2
position(mm)
Measured X spot 2.7 6.6 3.9 1.0 3.1 3.5 4.5
size(mm)
Measured Y spot 2.7 6.7 3.9 1.0 3.1 3.5 4.5
size(mm)
Measured Major axis | 2.8 7.0 4.0 1.1 3.2 3.6 4.7
spot size (mm)
Measured Minor 2.5 6.5 3.8 1.0 3.0 3.4 4.4
axis spot size (mm)
2D symmetry (%) 20% | 95% | 35% | 20% | 1.8% 3.2% 4.8%
XY Symmetry(%) | 1.0% | 3.9% | 0.9% | 0.7% | 0.3% 0.8% 1.3%
Relative positional | -0.85 | 0.71 | 0.05 | 0.36 0.00 0.10 0.30
error along X-
axis(mm)
Relative positional | -0.41 | 0.86 | 0.22 | 0.31 0.00 0.04 0.52
error along y-axis
(mm)

The measured spot sizes across all ranges and gantry angles were compared with
the baseline spot size values, and the results are summarised in Table 3.4. The comparison
demonstrated excellent agreement between the measured and baseline values. For the X-
axis spot size, the maximum variation was observed to be 6.5% at a range of 25.5 g/cm? for
a gantry angle of 270°. Similarly, the maximum difference in the Y-axis spot size was 7.31

% at a range of 30.5 g/cm? for a gantry angle of 30°.

The Standard Deviation (SD) of the differences in the X-axis spot size was less than
2.6 %, while for the Y-axis spot size, it was under 3 %. The maximum Root Mean Square
Error (RMSE) for the X-axis spot size difference was 2.5 %, and for the Y-axis spot size

difference, it was 2.9 %. Importantly, all the observed variations were well within the
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AAPM TG-224 specified tolerance of 10 % highlighting the consistency and accuracy of

the spot size measurements.

Table 3.4: Comparison of Lynx2D-measured X and Y spot sizes with the manufacturer-
specified baseline values, including the differences in X and Y spot sizes, along with the

mean, standard deviation, and root mean square error (RMSE).

Gantry | Maximum Mean (SD) | RMSE of | Maximum | Mean (SD) | RMSE
Angle | difference | X-spot size X-spot | difference | Y-spot size of Y
(Degre | in X spot difference size inY spot | difference spot
es) size (%) (%) differenc | size (%) (%) size

e (%) differen

ce (%)
0 6.1 0.00(2.42) | 242 576 | -056(227) | 2.26
30 5.29 0.27 (187) | 1.86 731 | -006(157) | 157
60 303 | -054(L78) | 178 730 | -0.41(232) | 231
20 029 | -250(1.31) | 131 427 | -073(174) | 174
120 0.13 283(134) | 1.33 191 | -220(204) | 203
150 217 | -1.32(142) | 142 272 | -1.49(169) | 169
180 5.60 0.61(2.10) | 2.10 6.60 | 2.67(2.93) | 2.9
210 6.04 0.75(256) | 2.55 489 | -047(208) | 2.07
240 174 | -073(133) | 133 556 | -111(218) | 2.17
270 650 | -052(182) | 182 378 | 0.14(164) | 163
300 0.14 | -265(134) | 134 082 | -2.05(1.38) | 137
330 341 | -0.74(220) | 219 204 | -099(130) | 1.30

Figure 3.7 illustrates the relationship between the measured X and Y spot sizes and the
range. The plot reveals a clear trend where the spot size decreases as the range increases,
indicating a dependence of spot size on the beam energy, with higher energy beams
producing smaller spots. This behaviour aligns with expectations, as higher energy beams

exhibit less scattering resulting in reduced spot size in air.

60



Chapter 3

Range (g/cm?) vs Measured Spot Sizes _(mm)

—4— Measured X Spot Size
4~ Measured Y Spot Size

N
wn

Spot Size {(mm)
wl $a u L wn =]
U o U o u o

ot
o

5 10 15 20 25 30
Range (gfcmz)

Figure 3.7: The measures of spot size (X and Y direction) plotted against the range.
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Figure 3.8: The measured spot size along X and Y direction versus range plotted for
different gantry angles. (a) X spot size versus range for different gantry angles. (b) Y spot

size versus range for different gantry angles.
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Figure 3.8 presents the measured spot sizes for different gantry angles plotted
against the range. The data show slight variations in the measured spot sizes for different
gantry angles, highlighting the influence of the beam's orientation on spot size
characteristics. The variations are more pronounced for spots at higher ranges, where the

differences between gantry angles become more evident.

3.3.2 Log file data analysis

The study collected all irradiation log files of the corresponding 5-spot pattern
measured using the Lynx2D detector. The log file data analysis was done using an in-house
tool developed using Python script. The log file recorded spot size, and relative positional
error values were compared against the lynx2D measured data to evaluate the correlation
between the data.

The log file also captures the scanning magnet currents corresponding to each spot.
Scanning magnet currents are inherently a function of the beam's range or energy, as they
control the deflection and positioning of the proton beam for accurate spot delivery. Figures
3.9 and 3.10 depict the variations in X and Y scanning magnet currents as a function of the
range. These plots highlight the dependency of the scanning magnet currents on the energy
levels, with distinct trends observed across the range spectrum. Such data are invaluable
for verifying the consistency and accuracy of the scanning magnet performance, ensuring

the correct positioning of spots during treatment delivery.

Range vs X Scanning Magnet Current (with Error Bars)
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Figure: 3.9: Range versus X scanning magnet current recorded in the log file data.
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Range vs Y Scanning Magnet Current (with Error Bars)
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Figure 3.10: Range versus X scanning magnet current recorded in the log file data.

The log file records spot size data measured by the 1C23 ionisation chamber, which
is equipped with copper strips spaced 5 mm apart. The spot size is determined by fitting a
Gaussian function to the charge collected across these strips. However, due to the limited
resolution of the IC23, the recorded spot size values are less precise when compared to
those obtained using a high-resolution scintillator detector, such as the Lynx2D.

Figures 3.11 and 3.12 display the relationship between the range and the spot sizes
recorded along the X and Y axes in the 1C23, respectively. These graphs include error bars
to illustrate the variation in recorded spot sizes for each energy or range. The log file

recorded spot size shows a longer error bar with respect to range.
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Figure 3.11: Range versus log file recorded X spot size with error bar.
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Figure 3.12: Range versus log file recorded X spot size with error bar.

Table 3.5: The difference in spot size along X and Y directions between the Lynx2D

measured and log file recorded data. The maximum difference, RMSE, mean and standard

deviation of the difference are given for different gantry angles.

Gantry | Maximum | Mean(SD) | RMSE of | Maximum | Mean(SD) | RMSE of
Angle | difference X-spot X-spot difference Y-spot Y-spot
(Degre | in X spot size size in'Y spot size size
es) size (%) | difference | difference | size (%) | difference | difference
(%) (%) (%) (%)

0 21.88 6.91(4.95) 8.50 16.04 4.05(4.19) 5.82
30 14.90 6.75(3.67) 7.68 17.42 4.87(4.47) 6.61
60 16.58 6.78(3.55) 7.65 18.51 5.20(4.68) 7.00
90 23.88 6.41(4.86) 8.04 18.93 5.85(4.11) 7.15
120 13.72 6.68(3.31) 7.45 17.69 5.99(3.81) 7.10
150 15.27 7.14(3.51) 7.96 16.27 5.08(3.79) 6.33
180 26.32 7.64(5.62) 9.48 16.44 4.51(3.95) 5.99
210 14.51 6.66(3.83) 7.68 19.38 6.70(4.75) 8.21
240 14.16 6.83(3.85) 7.84 21.04 6.35(5.15) 8.17
270 18.82 6.88(4.85) 8.42 19.43 5.76(4.35) 7.22
300 15.41 7.19(3.58) 8.03 19.32 5.67(4.35) 7.15
330 14.48 7.29(3.72) 8.19 16.31 4.54(3.76) 5.89
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Figure 3.13: Plots of measured spot parameters versus log file recorded spot parameters.
(a) Measured X-spot size versus log file recorded X-spot size. (b) Measured Y spot size
versus log file recorded Y spot size. (c) Measured relative X positional error versus log file
recorded relative X-positional error. (d) Measured relative Y positional error versus log file

recorded relative Y positional error.

The comparison of Lynx2D-measured spot parameters with the spot size values
recorded in the log file is summarised in Table 3.5. Additionally, the relationships between
Lynx2D-measured and log file-recorded spot sizes in the X and Y directions, as well as the

correlation between their relative positional errors, are illustrated in Figure 3.13.

From Table 3.5, the maximum observed difference in X-spot size was 23.9 %,
corresponding to a range of 19.5 g/cm2 and a gantry angle of 90°. For the Y-spot size, the
maximum difference was 21.04 %, observed at a range of 4.1 g/cm? and a gantry angle of
240°. The highest mean X-spot size difference was 7.64 %, with a SD of 5.62 %, while the
highest mean Y-spot size difference was 6.7 %, with an SD of 4.75 %. The maximum
RMSE was 9.5 % for the X-spot size and 8.21 % for the Y-spot size. These values indicate
that the spot size differences recorded in the log file exceed the AAPM TG224
recommended tolerance of 10 %. Furthermore, the maximum differences between the log
file-recorded relative positional errors and the Lynx2D-measured relative positional errors
were found to be 0.910 mm and 1.610 mm for the X and Y directions, respectively. These

deviations surpass the TG224-recommended tolerance of 1 mm for relative positional error.
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The findings suggest that the log file-recorded spot sizes and positional data exhibit
variations and uncertainties that exceed the established tolerance limits when compared to
scintillator-measured values. Consequently, the direct use of log file data for evaluating
spot size and position in quality assurance processes may introduce significant errors,
highlighting the necessity for independent verification using reliable measurement tools

such as the Lynx2D detector.
3.4 Discussion

Spot dosimetric accuracy is a critical determinant of precise dose delivery in proton
therapy, directly influencing patient treatment outcomes. This chapter comprehensively
describes the methodologies employed for spot parameter measurement and evaluates the
accuracy of key dosimetric parameters. It also details the analysis of irradiation log file data
compared with detector-measured values. The study systematically investigates the
accuracy of spot size, position, and symmetry for individual spots in the proton PBS system,

highlighting their significance in ensuring optimal treatment precision.

A study conducted by Kraan AC et al. [10] investigated the impact of spot size
variations on dose delivery by altering the nominal spot size by 5 % to 50 % and calculating
the dose in seven patient datasets. The findings demonstrated that variations in spot size
significantly influence treatment plan quality. Similarly, Liu C et al. [11] evaluated the
relationship between spot size and spot spacing in treatment plan quality. Their study
concluded that beams with smaller spot sizes are more robust in managing interplay effects
and anatomical variations compared to larger spot sizes. Rana S et al. [3] focused on the
effect of spot size variations in Stereotactic Body Radiation Therapy (SBRT) lung cases,
revealing that a 20 % variation in spot size led to a 3 % change in target dose coverage,
while a 15 % variation resulted in less than a 2 % dose difference. These results align with
the AAPM TG224-recommended spot size tolerance of 10 %.

In this study, the Lynx2D measured spot size across all energy ranges and gantry
angles demonstrated high accuracy, with maximum deviations of less than 8 % compared
to baseline values well within the 10 % tolerance specified by AAPM TG224. This
underscores the importance of routine verification of spot size in PBS systems. Ensuring

spot size accuracy is essential for maintaining treatment plan quality and delivering precise
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doses to patients, reinforcing the need for regular quality assurance checks as part of

standard PBS practice.

Numerous studies have utilised irradiation log files for PSQA. Winterhalter C et al.
[12] demonstrated the potential of log file data combined with MC dose calculation
algorithms, reporting that over 90 % of voxels exhibited dose errors of less than 3 % when
comparing planned and recalculated doses. This finding suggests that log file and MC-
based methods could serve as viable alternatives to conventional measurement-based
PSQA. Similarly, Jeon C et al. [13] employed the TOPAS-MC dose engine to recalculate
doses for a line-scanning PBS system using spot position and MU information from log
files. Their results showed a gamma analysis passing rate exceeding 90 % for 2 mm/2 %
criteria, although their study did not account for potential variations in machine output.
Ates O et al. [6] conducted a comprehensive analysis of six years of log file data from a
PBS proton therapy machine, focusing on the accuracy of spot MU, position, and size
compared to TPS-specified values. Their findings revealed that MU accuracy and spot
position errors were both within acceptable limits, with deviations of less than 1 %.
However, significant discrepancies in spot size were observed, with many exceeding the
10 % tolerance specified by AAPM TG224.

In this study, the variation between measured spot sizes and log file-recorded values
frequently exceeded the AAPM TG224 recommended tolerance of 10 % across most ranges
and gantry angles. The mean error was greater than 7 %, with an SD exceeding 5 % for
numerous ranges and angles. While earlier studies have primarily focused on log file
derived MU and spot position data for MC-based dose recalculations in PSQA, this
approach often overlooks the critical contributions of spot size and symmetry. These
parameters are essential for ensuring accurate dose comparisons between the TPS and

delivered doses.

The findings of Toscano S et al. [8] underscore the inherent uncertainties in log file
data, particularly for spot position and spot size, emphasising the limitations of directly
utilising log file data for PSQA or machine QA without thorough evaluation. In this study,
the substantial SD and variations in spot size exceeding 10 % between Lynx2D-measured
and log file-recorded data further highlight the degree of error and uncertainty in log file-

reported spot size values. A comprehensive assessment of log file inaccuracies is
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imperative to account for these discrepancies and to ensure robust quality assurance in
proton therapy. Rigorous validation of log file data, particularly spot size and symmetry, is

essential to enhance the reliability of PSQA and machine QA processes.

Measurement-based PSQA has traditionally been the gold standard for verifying
treatment accuracy. However, this approach is time-consuming, requiring significant
machine time and manpower. Automation in QA processes for PBS is increasingly critical
to ensure fast and reliable evaluations of beam delivery accuracy. Current PSQA methods
using MC dose recalculations with log file data primarily focus on spot position and MU
values, often neglecting variations in parameters such as spot size and symmetry. These
parameters are crucial for accurate dose evaluation, as their variations can significantly

affect treatment quality.

In this study, log file-recorded data were compared with measurements obtained
using the Lynx2D scintillation detector to evaluate their correlation. While the spot size
data from the log files showed some correlation with measured values, the associated errors
exceeded the tolerance limits set by international guidelines, raising concerns about their

direct use for QA without correction.

The introduction of ML models offers a promising solution to address these
uncertainties. ML models can effectively handle non-linearity in the data and improve the
accuracy of parameter predictions, including spot size and symmetry. By mitigating
uncertainties in log file data, ML based approaches can provide a more robust framework
for utilising log file data in both machine QA and PSQA. This advancement represents a
significant step toward improving automation, enhancing reliability, and ensuring precision

in PBS proton therapy.
3.5 Conclusions

This chapter analysed and compared Lynx2D scintillation detector measurement
data with log file-recorded data for spot parameters in a proton PBS system. The findings
demonstrate a correlation between the log file and measured data; however, significant
errors were identified, particularly in spot size and, to a lesser extent, in spot position. These
discrepancies highlight the limitations of using log file data directly for quality assurance

processes without correction.
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The insights gained in this chapter set the stage for the next phase of the study,

which explores the development of ML models. These models aim to use log file data as

input and measured data as output to address existing inaccuracies and establish a robust

framework for improving log file data reliability. This approach represents a critical step

toward enhancing the precision and efficiency of quality assurance in PBS proton therapy.
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4.1 Introduction

The ML is revolutionising radiation therapy by introducing advanced
computational techniques that enhance clinical workflow precision, efficiency, and
automation. In recent years, ML has emerged as a powerful tool for addressing the
challenges associated with QA, auto contouring, and treatment planning in proton therapy.
By leveraging complex algorithms and large datasets, ML models can identify patterns,
predict outcomes, and optimise processes, leading to more accurate and efficient treatment
delivery [1,2].

The proton radiotherapy system is very complex in nature and requires more
accuracy in treatment and quality assurance to ensure proper dose delivery to the patient.
ML models can automate many of the QA workflows to provide a fast and accurate
troubleshooting mechanism. ML has shown promise in automating QA tasks in proton
therapy. For example, Grewal et al. [3] utilised GPR and an SNN to predict output and MU
in a double scattering proton therapy system, using parameters such as range, field size,
and modulation as inputs to the models. Similarly, Li Z et al. [4] applied feed-forward and
recurrent neural network models to predict proton therapy range and dose by analysing data

from proton-induced positron emitters.

The irradiation log files are the records of the treatment. The log files provide a rich
data source for ML applications, especially in PBS systems, where they can be used to
predict spot positions and MU per spot [5]. Dominic Maes et al. [6] demonstrated that ML
models trained on log files and treatment planning data from 20 PBS patient plans could
accurately predict delivered spot positions and MU values. The deep learning models have
been explored for dose calculation improvements. Chao Wu et al. [7] introduced a deep
learning framework to convert pencil beam dose distributions into MC-equivalent
distributions, significantly enhancing dose calculation accuracy and integration into
treatment planning. Additionally, advanced architectures, such as recurrent U-nets and 3D
convolutional neural networks, have been developed for dose prediction, showing

promising results [8,9].
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Neishabouri A et al. [10] applied a long short-term memory (LSTM) neural network
to model dose deposition characteristics, successfully capturing variations across the
entrance region, Bragg peak, and distal fall-off, even in complex and heterogeneous
geometries. Similarly, Pastor-Serrano et al. [11] used a CNN to predict dose deposition by
mono-energetic proton beams for different energies and patient geometries, further
advancing the field. Meijers A et al. [12] explored the use of log file data in conjunction
with patient breathing patterns to reconstruct 4D dose distributions. Their work enabled
comparisons between planned and delivered doses by integrating weekly 4D CT scans,

highlighting the potential of ML and log file data in adaptive proton therapy workflows.

However, the direct use of log file-recorded data for QA processes, such as spot
position, size and MU poses challenges. Log file spot position and size are determined
through a Gaussian fit approximation, introducing inherent uncertainties. These
uncertainties can exceed the precision of the scanning system, even after magnet
commissioning [13]. This limitation becomes particularly significant when using log file
data for pencil beam scanning PSQA or machine QA. Uncertainties in spot parameters can

result in inaccurate interpretations, potentially affecting treatment accuracy.

The ML models offer a powerful and comprehensive solution to mitigate
uncertainties in proton therapy by leveraging advanced data processing techniques. By
training on extensive, diverse, and high-quality datasets, ML algorithms can identify
intricate patterns, account for variability in recorded data, and significantly reduce the
impact of systematic and random errors. This capability firmly establishes ML as an
indispensable tool for enhancing the reliability and accuracy of log file data, enabling

precise predictions and ensuring robust quality assurance processes in proton therapy.

In Chapter 3, a detailed analysis comparing spot parameters measured with the
Lynx2D scintillation detector to those recorded in log files for a PBS system revealed a
correlation between the datasets. However, significant discrepancies were identified,
particularly in spot size and, to a lesser extent, in spot position. These findings highlight
that the direct use of log file data for analysing the dosimetric parameters of PBS is not
accurate without applying appropriate corrections. ML models, with their capability to

handle the non-linearity and inherent complexity of the data, can develop predictive
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frameworks that utilise log file data to accurately determine spot parameters, ensuring they

remain within the acceptable tolerance limits and improving overall treatment precision.

This chapter details the development and validation of ANN-based ML models
designed to predict spot size along the X, Y major, and minor axis direction of a spot and
relative spot positional errors along the X and Y axis using irradiation log file data as input.
The process of model creation, hyper parameter tuning, and validation through various

statistical tools is systematically summarised in this chapter.
4.2 Materials and Methods
4.2.1 Artificial Neural Network (ANN)

An ANN is a computational model inspired by the structure and function of
biological neural networks [14]. It consists of layers of interconnected nodes, or neurons,
that process information. An ANN typically includes an input layer to receive data, one or
more hidden layers to learn patterns and relationships, and an output layer to produce
predictions or classifications. Each neuron applies a mathematical operation using weights,
biases, and an activation function to introduce non-linearity. The network learns by
adjusting these parameters during training to minimise the error between predicted and

actual outputs, making it a powerful tool for solving complex, non-linear problems.
4.2.2 ANN model architecture

This study developed six distinct ANN models, including X spot size prediction, Y
spot size prediction, major axis spot size prediction, minor axis spot size prediction, relative
positional error along the X-axis prediction, and relative positional error along the Y-axis
prediction. These ANN models are based on the Multi-Layer Perceptron (MLP)
architecture, which consists of one input layer, three hidden layers, and one output layer
[15]. The same architecture was applied consistently across all models. The detailed

architecture specifications are provided below.

4.2.2.1 Multi-Layer Perceptron (MLP) model

The MLP model is a class of ANN that consists of multiple layers of interconnected
nodes, also known as neurons. A schematic diagram of an MLP neural-based model is

shown in Figure 4.1. The MLP model is a feedforward neural network, meaning data flows
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from the input layer through the hidden layers to the output layer without looping back.
The training process involves adjusting the weights and biases of the neurons using
algorithms like backpropagation and optimisation techniques. These adjustments minimise
the error between the predicted and actual outputs by iteratively updating parameters based

on the error gradient.

The inclusion of one or more hidden layers allows the MLP to model complex, non-
linear relationships between input features and target variables, making it well-suited for a
wide range of tasks, including regression, classification, and pattern recognition. The
number of neurons in each layer, the choice of activation functions, and the optimisation
algorithm significantly influence the model's performance and its ability to generalise to

unseen data.

Schematic Diagram of an MLP Neural network Model

Output Layer

Input Layer

Hidden Layer 1 Hidden Layer 2

Figure 4.1: Schematic diagram of an MLP neural network model with one input layer, two

hidden layers, and one output layer.

In this study, the MLP model creation was carried out in Python, a high-level,
general-purpose programming language renowned for its readability and extensive support
for scientific computing. The development environment utilized was Spyder, an open-
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source Integrated Development Environment (IDE) designed specifically for scientific
programming in Python. Spyder offers features such as advanced editing, analysis,

debugging, and profiling, making it suitable for data-intensive applications.

For building and training the ANN, the Keras library was employed. Keras is a
high-level neural network API that facilitates the creation of deep ML models with minimal
code [16]. It operates as an interface for the Tensor Flow library, which serves as the
backend. TensorFlow is an open-source platform developed by Google for ML and Al
tasks, providing a comprehensive ecosystem of tools and libraries for model development

and deployment [17].

This combination of Python, Spyder, Keras, and TensorFlow provided a robust
framework for developing the ANN model, enabling efficient experimentation and

implementation of the MLP architecture for the study.

Here is the script snippet of how the necessary libraries were imported and the

Sequential model was instantiated:

# Python script for importing the sequential model from tensorflow.
import tensorflow as tf

from tensorflow. keras.models import Sequential

from tensorflow. keras.layers import Dense

#Initialize the Sequential model

model = Sequential()

4.2.2.2 Input layer parameters

The input layer is the initial stage where data enters the network. Each neuron in
this layer represents a specific feature or attribute of the input data, effectively capturing
the independent variables or predictor variables. The primary function of the input layer is
to receive these features and transmit them to the subsequent hidden layers for further

processing.

In this study, the input variables for all six ML models are taken from the log file

data. The prediction models for the X and Y spot sizes, as well as the major and minor axis
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spot sizes, utilized a common set of eight input variables. These variables encompassed the
X and Y spot sizes recorded in IC23 and IC1, the primary current of the scanning magnets,
beam current, and gantry angle. In contrast, the models predicting the X-axis and Y-axis
relative positional errors incorporated nine input variables: The X and Y spot sizes recorded
in 1C23, the X and Y position values recorded in IC23, the X and Y positional errors in

IC23, the primary current of the X and Y scanning magnets, and the beam current.
4.2.2.3 Output layer

The output layer represents the dependent variables, also called the label values.
The ML model optimises the network to minimize the difference between the predicted
values and the label values. In this study, the Lynx2D measured spot parameters were used
as label variables, such as X spot size, Y spot size, Major axis spot size, minor axis spot
size, X spot relative positional error, and Y spot relative positional error. The Pearson
correlation coefficient is calculated using the input and output variables.

4.2.2.4 Hidden Layers

The hidden layer in a neural network serves as an intermediate stage between the
input and output layers. It contains neurons that transform the input data by applying
weighted connections and activation functions, allowing the network to identify and learn
complex patterns. The structure of the hidden layers, including the number of layers and
neurons in each layer, influences the model's ability to capture and represent intricate
patterns within the data. In this study, three hidden layers are used with 30 neurons each

for all models.

The following equation demonstrates the calculation of the weighted sum in a

neuron within a neural network.

z =iywixi+b (4.2)
Where:

z: The weighted sum, or the input to the activation function, which is the result of applying
weights and bias to the input features.

iywixi : The summation of each input feature Xi multiplied by its corresponding weight
Wi.
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This operation captures the importance of each input feature based on the learned weights.

b: The bias term, which allows the neuron to adjust the output independently of the input
features. It enables the model to shift the activation function, helping the network learn
better.

4.2.2.5 Rectified Linear Unit — Activation function

The activation function is a mathematical operation applied to each neuron'’s output.
It introduces non-linearity into the model, enabling the network to learn and represent
complex patterns in data. Without activation functions, the network would behave as a
linear model, regardless of its depth, limiting its ability to solve non-linear problems.
Activation functions also help regulate the flow of information through the network,

ensuring effective learning during training.

One of the most widely used activation functions in ANN models is the Rectified
Linear Unit (ReLU) [18]. It is preferred due to its simplicity, efficiency, and ability to
introduce non-linearity. In this study, the ReLU activation function is used for all models.
The ReLU function is mathematically defined as:

f(x) = max(0,x) 4.2)
-

When a neuron's output consistently falls in the non-positive range (x < 0) its
gradient becomes zero, effectively rendering the neuron inactive. This means that for values
of (x < 0), the ReLU function will output zero, and the gradient during backpropagation
will not update the weights associated with those neurons. The simplicity of this operation
ensures computational efficiency, making ReLU a natural choice for large-scale models.

Figure 4.2 represents the schematic diagram of the ReL.U activation function.
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Figure 4.2: The visualisation of ReLU activation function.

The ReLU activation function is used in this study because it introduces non-
linearity, enabling the model to capture complex patterns in the log file data, which is
essential for accurate spot parameter prediction. Additionally, ReLU helps prevent the
vanishing gradient problem, ensuring effective learning in deeper neural networks. Its
computational simplicity speeds up the training process, making it well-suited for handling
large datasets. Furthermore, the sparse activations generated by ReLLU direct the model’s

focus to the most relevant features, reducing overfitting and enhancing generalisation.
4.2.2.6 Optimiser

An optimizer in an ANN model is an algorithm that adjusts the model's weights and
biases to minimize the loss function and improve performance. It updates the parameters
by calculating the gradients of the loss function and modifying the weights accordingly.
Model training is done by optimising the weights and bias of each neuron in the hidden
layers to reduce the error in the prediction. In this study, an optimiser called Adaptive
Moment Estimation (Adam) is a widely used gradient-based optimization algorithm for
training ML models [19]. It combines the strengths of two other optimizers: Momentum
and RMSprop, to provide efficient and effective updates to the model's parameters.
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The Adam optimizer is a highly regarded algorithm in ML due to its ability to adjust
learning rates for individual parameters dynamically. It achieves this by leveraging the first
and second moments of the gradients, which helps maintain stability and ensures efficient
convergence. The algorithm also employs momentum by averaging past gradients, which
smooths updates and effectively handles noisy or sparse gradients. Additionally, Adam
corrects biases in these moving averages, particularly early in training, when the estimates
are skewed towards zero. Typically, the default learning rate for Adam is set to 0.001,
which serves as a reliable starting point, though it can be fine-tuned to meet specific

requirements.

The Adam optimizer is used in this study due to its key features adaptive learning
rates, momentum integration, and bias correction. These attributes allow Adam to
efficiently adjust the learning rate during training, improving convergence speed and model
performance. By incorporating momentum, Adam helps accelerate learning in relevant
directions, while bias correction ensures more accurate parameter updates, especially

during the initial stages of training.
The Adam maintains two moving averages during training
First moment (m, ): The mean of the gradients (similar to momentum)

Second moment (v;): The mean of the squared gradients (used for scaling).

The algorithm's update rules are:

1. Compute Gradient:
e = Vg, J(6¢) (4.4)

where g, is the gradient of the loss function; J(8,) with respect to the model parameters;

6, at time step t.

2. Update Moving Averages:

my= Bimi_q + (1 —B1)g: (4.5)

v = Bovpoq + (1= Br)gf (4.6)

Here S, (default 0.9) and S, (default 0.999) are decay rates for the moving averages.
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3. Bias Correction:

Since m; and v, are initially biased toward zero, the corrected values are:

My = — 57 (4.7)
b, = 13;5 (4.8)
4. Parameter Update:
Parameters are updated using:
041 = 0 — U\/ﬁ—rfie (4.9)

Where 1 is the learning rate and € is a small constant to avoid division by zero.
4.2.2.7 Loss function

A loss function is a mathematical function used to measure the difference between
the predicted output of an ML model and the actual target values. It quantifies how well or
poorly the model is performing. The goal during training is to minimize this loss function,
which helps to optimize the model’s parameters (e.g., weights in a neural network) so that

predictions are as close as possible to the actual outcomes.

In this study, used MSE as the loss function [20]. MSE is commonly used in

regression tasks, where the objective is to predict continuous values.
4.2.3 Model training

The training process for the six ML models X spot size prediction, Y spot size
prediction, major axis spot size prediction, minor axis spot size prediction, X spot relative
positional error prediction, and Y spot relative positional error prediction was carefully
structured to ensure accuracy and reliability. The input and target values for these models
and also the architecture of the models are presented in Figures 4.3 and 4.4. The log file
recorded data used as input variables and the scintillator measured data used as output or
label values. While the four spot size prediction models shared 8 input variables as shown
in Figure 4.3, the two positional error prediction models used 9 input variables, as
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illustrated in Figure 4.4. These specific configurations ensured that each model was tailored

to its respective predictive task.

| ML model architecture of the spot size prediction models

'x spot size recorded in IC*23 | |l | —— —— —— | Hyperparameters used for the 4 models
Optimiser: Adam
Activation function: Relu
l Y spot size recorded in 1C23 w—> Loss function: Mean Square error
Batch size: 30
I X spot size recorded in IC1 =it Number of Epochs: 100
s - o~ m™m
' Y spot size recorded in IC1 = 2 z g ——"
= & E || — ahe
X scanning magnet’s primary 5 g T —J
# o
current g 1;_5 E Output layer
X scanning magnet’s primary
current .
Labels of 4 ML models ( Scintillator
’ Beam current =0 measured data)
- X spot size
Y spot size
Gantry angle e
l Byne Major axis spot size
Minor axis spot size
Input layer (log file data) 3 Hidden layers (30 neurons each) A

Figure 4.3: The ANN model architecture of the spot size prediction models. The x-spot
size, y-spot size, major axis spot size and minor axis spot size prediction models are shown
in the figure. All four models share the same input variables, hidden layers and hyper

parameters. *IC- lonisation chamber.

The data used for this study was divided into three parts: 70 % for model training,
15 % for evaluation, and 15 % for testing. All models followed a uniform architecture,
employing the ReLU activation function in the hidden layers. ReLU introduced essential
non-linearity, enabling the models to learn intricate patterns by selectively activating
neurons based on their input. The training spanned 100 epochs with a batch size of 30,

which provided a balance between computational efficiency and stable updates.

82



Chapter 4

i ML model architecture of the relative positional error prediction models ‘

| X spot size recorded in 1C*23 == s pe— Hyperparameters used for the 2 models
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Figure 4.4: The ANN model architecture of the relative positional error prediction models.
The x-spot relative positional error and y-spot relative positional error prediction models
are shown in the figure. All the two models share the same input variables, hidden layers

and hyper parameters. * 1C- lonisation chamber.

During each training epoch, the models adjusted weights and biases for neurons to
produce predictions based on the input data. The MSE loss function was used to calculate
the error by measuring the squared difference between predicted and true values. This error
was then used by the Adam optimizer, which adjusted the model parameters by applying
adaptive learning rates and momentum to progressively minimize the error. This iterative
process continued across all epochs, fine-tuning the models to enhance their predictive
accuracy. The combined use of ReLU, MSE, and Adam ensured an effective training

process, resulting in models capable of generating highly reliable predictions.

4.2.4 Model validation

Model validation plays a crucial role in evaluating the effectiveness and
generalizability of ML models. It helps to ensure that the models are not overly tuned to
the training data and can make accurate predictions on new, unseen data. In this study,
model validation was essential to verify the reliability and precision of the developed

models in predicting spot sizes and positional errors. By applying various validation
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techniques, assessed how well the models generalized to different datasets, ensuring their
predictive capabilities in practical, clinical settings. This process also allows for identifying

any biases or weaknesses, leading to necessary refinements.

In this study, the model validation tools employed include gquantitative analysis
through the calculation of metrics such as RMSE, MSE, R-squared, and Mean Absolute
Percentage Error (MAPE), as well as qualitative analysis using tools such as histogram of
residuals, scatter plot of errors, and Q-Q plot, and cross-validation using K fold cross

validation method as outlined below.
4.2.4.1 Quantitative analysis

Each quantitative metric provides a unique perspective: RMSE and MSE offer
insights into the magnitude of errors, with RMSE being more interpretable in the original
units of the data. R? helps assess the proportion of variance explained by the model,
indicating its overall fit. MAPE provides a percentage-based measure of error, making it
scale-independent. Together, these metrics offer a comprehensive analysis, ensuring a
thorough evaluation of model accuracy and robustness from different angles.

4.2.4.1.1 Mean Squared Error (MSE)

The MSE is a fundamental metric used to evaluate the performance of predictive
models by measuring the average squared difference between predicted values and actual
values It indicates how well a model captures the underlying patterns in the data, with
smaller MSE values signifying higher accuracy. Unlike RMSE, MSE does not involve
taking the square root, making it more sensitive to large errors. The formula for MSE is

MSE = ~31L, (/" = y{™)* (4.10)

Here,

n is the number of observations.

ed

yI T represents the predicted values.

true

v represents the true values.

In this study, the MSE of the model residuals was calculated for all six ML models

and plotted to analyse the data's normality and assess the accuracy of each model's
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predictions. By comparing the MSE values across models, insights were gained into their

relative performance.
4.2.4.1.2 Root Mean Squared Error (RMSE)

The RMSE is a commonly used measure to assess the performance of predictive
models by quantifying the average deviation between predicted values and observed values
It is computed as the square root of the mean of the squared differences between these
values, providing a single value that represents the model's accuracy. Smaller RMSE values

indicate that the model's predictions are closer to the actual values. The RMSE formula is:

RMSE = J%Z?ﬂ(yf’ed — yfrue)? (4.11)

Here,

n is the number of observations.

yP"*? represents the predicted values.

true

v represents the true values.

In this study, the RMSE of the model residuals was computed and visualized for all

six ML models to assess data normality and verify the accuracy of their predictions

4.2.4.1.3 Mean Absolute Percentage Error (MAPE)

The MAPE is a widely used metric to evaluate the accuracy of a predictive model,
particularly in regression problems. Unlike MSE and RMSE, MAPE measures the error as
a percentage of the actual values, making it easier to interpret, especially when comparing
models across different datasets. MAPE calculates the average of the absolute percentage
differences between the predicted values and the actual values.

The formula for MAPE is:

pred true
Yi - Yi
true
Vi

1
MAPE = -3,

X 100 (4.12)
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In this study, in addition to MSE and RMSE, also calculated MAPE also for the
spot size prediction models. However, The MAPE metric was not computed for the
positional error prediction models due to the potential for the MAPE to produce undefined
or infinite values when actual values are zero or close to zero.

4.2.4.1.4 R-squared (R?) —Coefficient of determination

R-squared (R?) also referred to as the coefficient of determination, is a statistical
metric that assesses the proportion of the variance in the dependent variable that can be
explained by the independent variables in a regression model. It indicates how well the
model fits the data. A higher R? value suggests that the model explains a larger portion of

the variance, whereas a lower value indicates a poorer fit.

The formula for calculating R? is :

d
e e /S

R*=1
T 7))

(4.13)

here,
¥; is the mean of the observed values.

The interpretation of R? is as follows: when R?=1, the model fully captures the
variance in the data, indicating perfect prediction accuracy. If R? =0, the model does not
account for any variance and performs no better than predicting the mean value. A value of
R? between 0 and 1 suggests that the model explains some variance in the data, but there is

still scope for enhancing the model's performance.

In this study, calculated R? for all six ML models to assess the proportion of
variance explained by each model. This evaluation helps to understand how well each

model fits the data and captures the underlying patterns.

4.2.4.2 K-fold cross-validation

To ensure the reliability and robustness of the ML models, K-fold cross-validation
was employed. This technique is widely used in ML to evaluate the performance of
predictive models on datasets [21]. The concept of k-fold cross-validation involves splitting
a dataset into equal parts or folds. Then, the model was trained and evaluated k times using

a different fold as the test set and the rest of the folds as the training set. K-fold cross-
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validation aids in assessing the generalisation performance of a model and mitigates the
risk of overfitting. The performance metrics, such as RMSE, are then averaged across all
folds to provide a more accurate estimate of the model’s generalizability and overall
performance. The resulting performance metrics can better estimate the model's
performance on new, unseen data by training the model on different training sets. Figure

4.5 illustrates the application of K-fold cross-validation within a machine-learning model.

In this study, K was set to 5 for cross-validation. The six models were validated by
dividing the dataset into 5 folds, and the prediction accuracy of each model was assessed

by calculating the RMSE for the predictions made with each fold.

Whole Data Set

Fold-1 Fold-2 Fold-3| ... Foldk
Split-1: Fold-1| |Fold-2| | Fold-3] ... |Fold-k
Split-2: Fold-1| | Fold-2| |Fold-3| ... [Fold-k Daiaiiatase
Split-3: Fold-1| |Fold-2| |Fold-3| ... [Fold-k fourd
Split-k: Fold-1| |Fold-2| |Fold-3| ++* |Fold-k

Final evaluation <:

Figure 4.5: Graphical representation of how the K fold cross-validation works in a model

validation (Picture courtesy Seving E et al [21])
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4243

Quiartile- Quartile plot (Q-Q) plot

The ML model prediction accuracy can be evaluated by plotting the residual

(difference between the predicted and true value) values. If the ML model is well-calibrated

or prediction accuracy is good, these residuals should ideally follow a normal distribution.

The Q-Q plot is a method to evaluate the normality of the residual plot [22].
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Figure 4.6: Q-Q Plots Demonstrating Distribution Characteristics: (a) Normal Distribution,
(b) Heavy Tails, (c) Left-Skewed Data, (d) Right-Skewed Data, and (e) Data with Outliers.
(Pleil JD et al [22]).
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The Q-Q plot is based on the concept of quantiles. Quantiles divide a dataset into
equal intervals, and the Q-Q plot compares the quantiles of the observed data against the
quantiles of a reference theoretical distribution. If the two distributions are similar, the
points will lie approximately on a straight line.

Different Q- Q plot types are depicted in Figure 4.6 and the details are given below.
(a) Normal distribution — points align along the line:

This plot displays data sampled from a normal distribution. The data points align well with
the reference line, showing that the sample quantiles closely follow the theoretical

quantiles, confirming the dataset's normality.
(b) Systematic deviation (heavy tails):

The plot shows systematic deviations of data points from the reference line, especially at
the extremes. This pattern is characteristic of heavy-tailed distributions, such as the t-
distribution with a low degree of freedom.

(c) Left skewed data:

This plot depicts a dataset with left skewness. The points dip below the reference line at
smaller quantiles and rise above it at larger quantiles, indicating an extended tail on the left

side of the distribution.
(d) Right skewed data:

The dataset in this plot exhibits right skewness. Points rise above the line at smaller
quantiles and fall below it at larger quantiles, reflecting an extended tail on the right side
of the distribution.

(e) Data with outliers:

This plot highlights the presence of outliers in the dataset. While most data points are close
to the reference line, a few extreme points deviate significantly, indicating anomalies or

rare observations in the data.

In this study, the Q-Q plot is used to analyse the normality of the residuals of all six
ML models.
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4.2.4.4 Histogram of Residuals

A histogram of residuals is a visual tool used to examine the distribution of
residuals, which are the differences between the actual and predicted values in a model.
This plot allows you to check if the residuals follow a normal distribution, an assumption
often required in regression analysis. ldeally, a symmetrical, bell-shaped histogram
indicates that the errors are normally distributed, suggesting a good fit for the model.
However, if the histogram shows significant skewness or irregular patterns, it could point

to problems such as outliers, incorrect model assumptions, or non-linearity.
4.3 Results

4.3.1 Correlation Analysis Between Input and Output Variables

The Pearson correlation coefficients were calculated to assess the relationships
between the label values (scintillator-measured parameters) and the input variables (log
file-recorded data) for six ML models. These correlation values are presented in Table 4.1
and Table 4.2. While many input variables exhibit strong correlations with the label values,
some variables show weaker relationships. For instance, the correlation between the x
positional error and the x-spot size recorded in 1C23 is only 0.19, indicating a weak linear
association. This suggests that some input variables may not contribute significantly to

predictive performance if only linear relationships are considered.

However, ANNs are designed to capture complex, non-linear dependencies
between variables. Unlike traditional linear models, ANNs can identify intricate patterns
and relationships that may not be evident through simple linear correlation analysis.
Therefore, even variables with poor Pearson correlation values, such as the x positional

error, may still contain valuable information for the ANN model.

To ensure comprehensive training and to leverage the ability of ANNSs to identify
non-linear interactions, all input variables tabulated were included in the ANN model
training process. This approach allows the model to explore and utilise hidden
dependencies that linear correlation measures, such as the Pearson coefficient, might

overlook.
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Table 4.1: The person correlation coefficients between the input variables and label values

of the x spot size, y spot size, major axis spot size and minor axis spot size prediction ANN
models.

Pearson correlation coefficients
label values (Scintillator measured data)
input variables (log file | X spot | Y spot | Spot size along the | Spot size along the

data) size size major axis minor axis
X spot size recorded in | 0.971 | 0.974 0.972 0.971
IC23
Y spot size recorded in | 0.978 | 0.974 0.975 0.977
IC23
X spot size recorded in | 0.832 | 0.832 0.832 0.829
IC1
Y spot size recorded in | 0.751 | 0.749 0.748 0.750
IC1
X-scanning magnet’s | -0.946 | -0.943 -0.942 -0.945
primary current
Y-scanning magnet’s -0.977 | -0.978 -0.977 -0.976
primary current
Beam current 0.596 | 0.597 0.596 0.597

Table 4.2: The Pearson correlation coefficients between the input variables and label values

of the x and y relative positional error prediction ANN models.

Pearson correlation coefficients
label values (Scintillator measured data)
input variables (log file data) Relative X positional Relative Y positional
error error
X spot size recorded in 1C23 0.191 0.182
Y spot size recorded in IC23 0.186 0.184
X position recorded in 1C23 0.884 -0.301
Y position recorded in 1C23 -0.233 -0.748
X positional error recorded in the 0.874 0.295
IC23
X positional error recorded in the -0.485 0.817
IC23
X-scanning magnet’s primary 0.870 -0.327
current
Y-scanning magnet’s primary -0.321 -0.730
current
Beam current -0.330 -0.420
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4.3.2 Model Hyper parameter tuning

Hyper parameter tuning plays a pivotal role in optimising the performance of ML
models by identifying configurations that achieve the best balance between accuracy and
computational efficiency. In this study, various configurations of neural networks were
systematically explored to minimise the loss function across six models. Key hyper
parameters were adjusted, including the number of hidden layers (2 and 3), the number of
neurons per layer (30 and 50), epochs (200,100 and 50), the batch size (30 and 100), and
the learning rate (0.01 and 0.001) for the Adam optimiser. These adjustments created three
different configurations for each model, allowing for a thorough evaluation of the impact

of architectural and training dynamics on model performance.

Three scenarios were tested for each model to determine the optimal combination
of hyper parameters. The results consistently indicated that the configuration of 3 hidden
layers with 30 neurons per layer, a batch size of 30, and a learning rate of 0.001 yielded the
lowest RMSE values. As summarised in Table 4.3, this combination demonstrated superior
performance across all models, ensuring robust generalisation to unseen data while
maintaining computational efficiency. This systematic approach provided valuable insights
into the influence of hyper parameter choices, leading to the selection of a configuration
that effectively optimises the learning process and enhances model precision. Figure 4.7
plots the model accuracy metrics for the X spot size prediction model, showing a reduction

in MAPE (%) as epochs increase.

Plot of Model Accuracy Metrics
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Figure 4.7: Model accuracy metrics plot for the X spot size prediction model, showing a

reduction in MAPE (%) as epochs increase. Train- training data, Val- validation set.
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Table 4.3: The summary of different hyper parameter combinations used for the six ML

model tuning and the obtained RMSE and R-square are tabulated.

Model Training Hidde | Epo | Neurons | Batch | Learni | RMS R-
n chs | ineach size ng E Squar

layers layer rate | (mm) e
X spot Training 1 2 200 50 100 0.01 | 0.075 | 0.989
size Training 2 3 100 30 30 | 0.001 | 0.051 | 0.993
Training 3 3 50 30 30 0.001 | 0.065 | 0.990
Y spot Training 1 2 200 50 100 0.01 | 0.065 | 0.985
size Training 2 3 100 30 30 0.001 | 0.050 | 0.992
Training 3 3 50 30 30 | 0.001 | 0.072 | 0.980
Major axis | Training 1 2 200 50 100 0.01 | 0.073 | 0.975
spot size | Training 2 3 100 30 30 | 0.001 | 0.049 | 0.998
Training 3 3 50 30 30 0.001 | 0.067 | 0.981
Minor axis | Training 1 2 200 50 100 0.01 | 0.073 | 0.975
spot size | Training 2 3 100 30 30 | 0.001 | 0.049 | 0.998
Training 3 3 50 30 30 0.001 | 0.067 | 0.981
Relative X | Training 1 2 200 50 100 0.01 | 0.052 | 0.981
positional | Training 2 3 100 30 30 | 0.001 | 0.030 | 0.991
error Training 3 3 50 30 30 0.001 | 0.045 | 0.989
Relative Y | Training 1 2 200 50 100 0.01 | 0.054 | 0.982
positional | Training 2 100 30 30 0.001 | 0.030 | 0.996
error Training 3 3 50 30 30 | 0.001 | 0.047 | 0.987

4.3.3 Model Performance Evaluation

The trained models were evaluated using a testing dataset comprising 15 % of the
overall data, a subset not employed in the initial model generation process. Each model’s
prediction accuracy was evaluated using a few statistical evaluation metrics. Table 4.4
presents a concise overview of the evaluation metrics for the six ML models. It offers a
consolidated and comprehensive view of the performance assessments for each ML model.

The metrics include MSE, MAPE, RMSE, R-square, and maximum prediction error. The
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spot size measurement models demonstrated excellent prediction accuracy, with MSE
values below 0.0028 mm and MAPE below 1 %. The highest observed RMSE value is

0.050 mm (R-square 0.991). In the relative positional error prediction models, the y relative

positional error prediction model exhibited the highest MSE value of 0.001 mm, with an
RMSE of 0.035 mm (R-square of 0.996).

Table 4.4: The evaluation matrices of all the Six ML Models. The values of MSE, MAPE,

RMSE, R- square and maximum error of each ML model.

error prediction

ML Models MSE(mm) | MAPE(%) | RMSE(mm) | R-Square max error
(mm)
X spot size prediction 0.003 0.991 0.050 0.993 0.251
Y spot size prediction 0.002 0.892 0.050 0.992 0.255
Spot size along major 0.003 0.942 0.050 0.998 0.300
axis prediction
Spot size along minor 0.002 0.950 0.050 0.994 0.311
axis prediction
Relative X positional 0.001 NA* 0.030 0.991 0.160
error prediction
Relative Y positional 0.001 NA* 0.030 0.996 0.170

NA — Not applicable, MSE- Mean squared error, MAPE — Mean absolute percentage error,

RMSE- Root mean squared error, R-square- Coefficient of determination

*The MAPE (%) is not calculated for the relative positional error prediction model.

Figure 4.8 illustrates the results of the six ML models, showcasing the comparison

between the measured and predicted parameters. The linear relationship depicted in the

figure provides a visual representation of the prediction accuracy for each model.
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Figure 4.8: Plots of measured and ML model predicted spot parameters. (a) The measured
and predicted X spot size. (b) The measured and predicted Y spot size. (c) The measured
versus predicted relative positional error in the X direction. (d) The measured versus
predicted relative positional error in the Y direction. (e)The measured versus predicted

Major axis spot sizes. (f) The measured versus predicted Minor axis spot sizes

Table 4.5 presents the results of K-fold (k=5) cross-validation, showing the

excellent performance of the models. Remarkably, all the RMSE values are below 0.150
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mm, indicating minimal average differences between the predicted and actual values.
Additionally, all the R-square values exceeding 0.960 signify an exceptional degree of
variance explained by the models, highlighting a strong relationship between the predictors
and the target variable. A good result in k-fold cross-validation indicates that the model is
robust and consistent across different partitions of the data, reducing the risk of overfitting

to a specific subset. It suggests the model will likely generalize well to new, unseen data.

Table 4.5: Root Mean Square Error (RMSE) and R-Square Values of the K-Fold Cross-
Validation (k=5) of Six ML Models.

RMSE(R-square) values of K fold (k=5) cross-validation
inmm
ML Models Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
(R- (R-square) (R- (R- (R-

square) square) square) square)

X spot size prediction 0.068 0.074 0.108 0.056 0.053
(0.996) (0.995) (0.989) (0.997) (0.998)

Y spot size prediction 0.085 0.083 0.112 0.083 0.080
(0.994) (0.993) (0.988) (0.994) (0.994)

Spot size along major axis | 0.120 0.113 0.123 0.109 0.097
prediction (0.987) (0.988) (0.986) (0.989) (0.992)

Spot size along minor axis | 0.090 0.127 0.147 0.098 0.110
prediction (0.992) (0.984) (0.979) (0.991) (0.988)

Relative X positional error | 0.032 0.029 0.052 0.034 0.032
prediction (0.993) (0.994) (0.977) (0.990) (0.993)

Relative Y positional error | 0.031 0.045 0.055 0.038 0.033
prediction (0.991) (0.981) (0.963) (0.983) (0.987)

RMSE- Root Mean Squared Error, R-Square- Coefficient of determination.

Figure 4.9 shows the histogram of the residuals (difference between true and
predicted values) for the six models. All the plots exhibit a normal distribution of data with
a mean near zero; a normally distributed residual plot in an ML prediction model suggests
unbiased and accurate predictions, validates the model’s assumptions, and enhances the
reliability of inference. It provides confidence in the model's performance and supports its

applicability in making reliable predictions on new, unseen data.
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Figure 4.9: Histogram of residuals (Difference between measured and predicted) of the ML
models. (a) Histogram of residuals of the X spot size prediction model. (d) Histogram of
residuals of the Y spot size prediction model. (c) Histogram of residuals of the X relative
positional error prediction model. (d) Histogram of the Y relative positional error prediction
model. (e) Histogram of residuals of the Major axis spot size prediction model. (f)

Histogram of Minor axis spot size prediction model.
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The normality was again tested using the Q-Q plot (Figure 4.10). The Q-Q plot is
an additional diagnostic tool to confirm the normality assumption. All the points in the Q-
Q plot follow the reference line. The histogram and Q-Q plot indicate that the model's

predictions are mainly close to the true values.
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Figure 4.10: Quartile- Quartile (Q-Q) plot of the model residuals. (a) Q-Q plot of residuals
of the X spot size prediction model. (b) Q-Q plot of residuals of the Y spot size prediction
model. (c) Q-Q plot of residuals of the X relative positional error prediction model. (d) Q-

Q plot of residuals of the Y relative positional error prediction model. () Q-Q plot of the
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residual of the Major axis spot size prediction model. (f) Q-Q plot of residuals of the Minor

axis spot size prediction model.
4.4 Discussion

The PBS proton therapy beam delivery system is complex and needs rigorous QA
protocols to ensure accurate dose delivery to the patient. Our institute’s standard protocol
for the daily dosimetric QA includes measurement of machine output using a parallel plate
chamber, proton range verification using a Multilayer ionisation chamber, and spot size
and positional accuracy verification using the Lynx 2D detector. The average time for the
daily dosimetric QA is 1.30 hours. Different compact daily QA phantoms are available for
daily QA within 30 minutes [23,24]. In a proton therapy centre with multiple treatment
rooms, it's challenging to use quality assurance equipment across all the rooms efficiently
and make the most of clinical hours. The spot measurement for different energies in
different gantry angles requires attaching the detector to the machine head and proper tilt
correction, which is time-consuming. Therefore, there was a need to investigate more

straightforward methods to address this challenge.

Current study aimed to develop accessible and cost-effective solutions for daily
verification of proton spot characteristics by leveraging ML models and irradiation log file
data. This chapter outlines the development and validation of ML models designed to
predict spot dosimetric parameters using log files as input. Newpower MA et al. [5]
developed a neural network model for predicting the spot position using measured and log
file recorded spot position data. The MSE of the prediction model was 0.300 mm. A similar
study was done by Maes D et al. [6], and the maximum MSE value of the position
prediction model was 0.150 mm. In this study, the models demonstrated high precision,
with RMSE values below 0.05 mm for predicting X, Y, major, and minor axis spot sizes.
The maximum prediction error was under 0.3 mm, and the MPAE remained below 1 %.
These results align well with the AAPM TG-224 [25] recommended tolerance of 10 % for
spot size accuracy and 1 mm for positional error, highlighting the reliability of the ML

models compared to established benchmarks.

Similarly, the ML models for relative positional error prediction achieved an RMSE
of less than 0.03 mm, with a maximum error of just 0.17 mm, demonstrating exceptional

precision. These findings highlight the utility of ML models in routine machine QA,
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offering a reliable, efficient, and manpower-saving alternative to traditional methods that
often rely on physical dosimeters. The application of these models ensures robust QA

processes, enhancing the effectiveness and efficiency of modern proton therapy systems.

By analysing Figure 4.8 it becomes apparent that the ML models exhibit accurate
and precise predictions of the spot parameters using the log file data. Notably, all the curves
in Figure 4.8 demonstrate a linear relationship, indicating a high level of prediction

accuracy.

Hyper parameter tuning plays a critical role in optimizing the performance of ML
models used in this study. Hyperparameters, unlike model parameters, are not learned
during training but must be predefined and carefully selected to ensure the model's
reliability and accuracy. Key hyper parameters tuned in this study included the learning
rate, batch size, number of hidden layers and number of neurons per layer. The multiple
combinations of hyper parameters help to find optimum solutions for the six ML models.
The combination of 3 hidden layers with 30 neurons each and 100 epochs with a batch size
of 30 and learning rate for Adam optimizer 0.001 yielded the best results for all the six
models with RMSE less than 0.05 mm (R2- 0.99) for all four spot size prediction models
and similarly for spot relative positional error models the RMSE was less than 0.03 mm
(R? 0.99).

The model performance was evaluated using the K-fold cross-validation technique
with k=5. Table 4.5 summarises the results, showing that the maximum RMSE among the
four spot size prediction models was less than 0.14 mm (R? >0.97), while the maximum
RMSE for spot relative positional error prediction models was under 0.06 mm (R? >0.96).
These results demonstrate the high accuracy and reliability of the models, with minimal
prediction errors. The consistently low RMSE values across folds confirm the models'
robustness and strong generalisation capabilities. This ensures their suitability for practical
applications, such as routine quality assurance in proton therapy, where precision and

consistency are critical.

The residuals for all six models were examined using histograms (Figure 4.9) and
Q-Q plots (Figure 4.10). The histogram showed a normal distribution with a mean near
zero, indicating unbiased and accurate predictions. This supports the model's reliability and

validates the assumptions made during model development. The normality assumption was
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further confirmed by the Q-Q plot, where all points closely followed the reference line.
These findings provide confidence in the models' performance and demonstrate their

suitability for making reliable predictions on unseen data.

Extensive literature has discussed using spot positions from the log file for patient-
specific quality assurance (PSQA). In a study by Belosi MF et al. [34], more than 95 % of
the plans passed their gamma criteria compared to the log file-based reconstruction and
calculated dose planes. The log file can be a potential tool for machine QA and PSQA.
However, many studies focused on spot position and MU prediction using log file data, and
there are no studies on spot size prediction using log files. The spot size prediction model
validation results show the accuracy of the models. These results highlight the reliability
of the ML models for predicting proton spot size and relative positional error. The spot size
prediction models will facilitate the analysis of daily variations in spot size without

requiring measurements using dosimeters such as scintillators.

4.5 Conclusions

In conclusion, this study successfully demonstrates the application of ML models
for accurate and efficient daily verification of proton spot characteristics, offering a
significant advancement in routine quality assurance processes in proton therapy. By
leveraging irradiation log file data, the developed models for predicting spot size and
relative positional error achieved high precision, with RMSE values consistently below
0.05 mm for spot size and below 0.03 mm for positional error. These results align with the
AAPM TG-224 recommended tolerances, underscoring the reliability and robustness of the
ML models. The models' performance was further validated through K-fold cross-
validation, histograms, and Q-Q plots, ensuring their generalisation capabilities and

confirming their suitability for deployment in clinical environments.

The successful implementation of ML models for proton spot size and positional
error prediction addresses the challenges of time-consuming, resource-intensive traditional
QA methods. By providing an accessible, cost-effective alternative that reduces the need
for physical dosimeters, the models contribute to enhanced operational efficiency and
streamlined workflows in proton therapy centres. This work also lays the foundation for

future applications of log file data in proton therapy, particularly in patient-specific quality
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assurance, and demonstrates the growing potential of ML in optimising and automating

clinical QA procedures.
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Title: Development of an In-House Tool for PSQA Analysis Using Machine
Learning Models and Log File Data.

5.1 Introduction

Proton therapy is a highly precise and effective form of radiation therapy used to
treat cancer, leveraging the unique physical properties of protons to deliver targeted doses
to tumours while minimizing damage to surrounding healthy tissues. This ability to deliver
precision has made proton therapy a vital tool in modern radiation oncology. However, the
clinical effectiveness of proton therapy depends on the accurate delivery of the proton
beams as specified by the treatment plan, necessitating thorough QA procedures to ensure

consistent and reliable performance across multiple treatment sessions.

There are many studies to simplify the QA of proton therapy systems using
advanced tools such as the MC dose algorithm and automation. A study by Liu C et al. [1]
introduced a fast MC-squared dose calculation algorithm to cross-check doses from the
Raystation TPS, showcasing the integration of MC-based methods to improve dose
verification in proton therapy. Similarly, Albertini F et al. [2] developed the first clinical
online adaptive re-planning system, relying solely on machine log files and in-room CT
images. Several studies have utilized MC and log files, which record spot position and MU
values for secondary dose evaluation [3,4,5]. These studies exclusively relied on log file
data and employed gamma analysis for verification. However, a limitation of MC-based
dose evaluation is its reliance on GPU-based systems for rapid calculations. Despite this,
MC-based methods remain valuable as they eliminate the need for dedicated dosimeter

measurements, which consume significant beam time and manpower [6].

A study by Toscano S et al. [7] evaluated the uncertainties in data recorded in log
files, particularly in spot position and MU. This research underscores that log-file data
carries inherent uncertainties, which must be carefully considered when using log files
directly in Monte Carlo-based dose calculations. Addressing these uncertainties in dose
evaluation ensures a more accurate assessment of treatment delivery quality, emphasizing
the importance of accounting for limitations of log files in PSQA workflows. The detailed
analysis of log file data and its correlation with dosimetric parameters measured using a

dedicated dosimeter is very important to avoid any wrong interpretation of data if solely
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depends on data in the log file for PSQA and machine QA. Ates O, et al [8] did a detailed
study of the log file data of the PROBEAT-V proton therapy system (Hitachi Ltd., Tokyo,
Japan) of 6-year data. The results suggest that the log file data analysis is a very good tool

for tracking the performance of the machine over time.

The irradiation log file of a PBS proton therapy system contains vast amounts of
data, making manual analysis and interpretation both labour-intensive and time-consuming.
Automating log file analysis through scripting provides a practical and efficient solution,
improving time management and simplifying the workflow. Chapter 3 discussed the
uncertainties associated with log file data, emphasizing that addressing these uncertainties

is critical to enhancing the reliability of log files for machine QA and PSQA workflows.

Chapter 4 introduced and validated ML models for predicting dosimetric
parameters, including spot size and relative positional errors, using log file data as input.
While the ML models demonstrated high prediction accuracy, effectively utilising these
models requires automated methods, such as scripting, to streamline the workflow.
Automating data segregation from log files and applying ML models saves time and
enhances the process's overall efficiency, enabling their meaningful application in PSQA

and machine QA.

This chapter focuses on developing and implementing an in-house script-based tool
to automate log file data extraction and integrate previously developed ML models for
predicting spot parameters. By automating the analysis of patient-specific beam irradiation
data, this tool combines data extraction with ML-based predictions to streamline the QA
process. Integrating ML into the QA process optimises the workflow, improving the
precision of proton therapy. The chapter details the tool’s framework, data processing, and
the comparison of predicted parameters with specifications, demonstrating its potential to
streamline PSQA in PBS proton therapy.

5.2 Materials and Methods

This session provides an overview of the materials and methods used to develop an
in-house automated tool for data extraction, spot parameter prediction, comprehensive data

analysis, and reporting results for each treatment beam in the PBS proton therapy system
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5.2.1 IBA Proteus plus multi-room system

The IBA Proteus Plus proton therapy system installed at ACTREC, Tata Memorial
Centre, Mumbai, utilized in this study is a multi-room setup equipped with multiple
treatment gantries. Specifically, the system includes three treatment gantries, as illustrated
in Figure 5.1. The cyclotron produced proton beam transfer to each gantry through the beam
transport system. While these gantries are identical in operation, their beam characteristics
are not beam-matched. Consequently, slight variations can occur between the gantries in
parameters such as spot size, range, nozzle water-equivalent thickness (WET), and source-
to-detector distance. To address these differences, the development of the in-house tool

accounted for these small variations, enabling the analysis of all irradiated beams from any

GTR2 GTR3

Figure 5.1: The Schematic representation of the layout of the Proton therapy system
installed at ACTREC Proton Therapy Centre, Navi Mumbai, India. GTR- Gantry.

5.2.2 Log file data extraction

The log files are generated and saved in a dedicated directory named "Data
Recorder" within the IBA beam delivery system after each beam delivery. These log files
are stored in .zip format, with a separate .zip file created for each beam. Each .zip file
contains seven .csv files that record detailed beam delivery data.
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The information from these log files is extracted using an in-house Python-based
script designed to automate the data extraction process efficiently. After each beam
delivery, the data from these log files is analysed by the script and tabulated alongside the
planned data received from the Mosaiq OIS. The analysis involves comparing the planned
data with the delivered data, focusing particularly on the range of each layer and key spot

dosimetric parameters such as spot size, position, MU etc.
A detailed description of each file is provided below:
5.2.2.1. beam.csv:

The file contains general information about the irradiation session (room, gantry

angle, cyclo current, temperature, humidity, and ionization chamber configuration)
5.2.2.2. beam_config.csv:

This file is a copy of the scanalgo database (configuration file of the scanning
controller). It contains all the scanning calibration parameters as well as the safety

tolerances.
5.2.2.3. beam_settings.csv:

The file contains treatment settings and parameters (including BMS, PMS, and

Scanalgo database).
5.2.2.4. event.csv:

This file has the timeline of the full irradiation, this file lists the timestamps of all
the important steps of one field irradiation (each tuning pulse, each layer, and each set

range)
5.2.2.5.map_record_tuning.csv

The Irradiation log of the initial tuning pulse. There is at least one tuning pulse at
the beginning of every range. During the tuning pulse, the alignment of the beam is verified
and adjusted, if necessary. This tuning pulse is done on the spot of the field that is closest
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to the un-scanned location of the beam. The tuning pulse is taken into account in the total

dose.
5.2.2.6. map_specif.csv file:

This file represents the TPS data, including the planned spot position, range, and
MU for each spot within a beam. The TPS transfers treatment planning data to the Mosaiq
OIS. The Mosaiq OIS transfers all spot-related data required by the IBA beam delivery
system, such as the spot position in the isocentre plane, the MU per spot, and the range or

energy of each spot.

The IBA beam delivery system converts the data into the format required for
delivery. Specifically, the IBA system verifies and records the size, position, and MU of
each spot using the 1C23 ionisation chamber. The system transforms the spot positions from
the isocentre plane to the 1C23 plane and calculates the beam range from the energy value.
Based on the range, the system assigns baseline spot size values to each spot. Additionally,
the MU values are converted into charge values to ensure the 1C23 chamber halts beam

irradiation once the prescribed MU is delivered.

Furthermore, the IBA beam delivery system calculates the minimum and maximum
positional values in the X and Y directions and the spot size in the 1C23 plane along both
axes. These calculations are based on tolerance values provided in Chapter 3, Table 3.2.
All the aforementioned data is recorded in the beam specification file for each range. The
specification file is generated for each layer. The in-house tool read this specification file

to extract the above-mentioned data.
5.2.2.7. map_record.csv

This .csv file records all major dosimetric parameters for each spot. It contains
detailed irradiation data for every spot, with a separate file generated for each range. The
file logs data at intervals of 200 us, creating a new row for each spot at these intervals. If a

single spot lasts longer than 200 ps, its data will appear across multiple rows.

The recorded data includes measurements from the nozzle head ionisation chambers

and scanning magnets. Key parameters captured in the file include:
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e SpotID

e Spot widths (X and Y) recorded in both the IC23 and IC1 ionisation chambers

e Spot positions (X and Y) recorded in the IC23 and IC1 chambers

e Charge collected in the primary and secondary dosimeters within the 1C23 for each
spot

e Primary and secondary currents of the X and Y scanning magnets

e Beam current

o Degrader feedback

o Gantry name

o LayerID

The beam specification file serves as a reference for beam irradiation. The beam
delivery system continuously monitors parameters such as spot position, charge, and size,
as recorded in the IC23 chamber. These are compared with the corresponding values in the
beam specification file. If any parameter deviates beyond the specified tolerance values,
the system triggers a beam interruption. The irradiation file is used to extract all irradiated
spot parameters for the analysis.

5.2.3 Conversion of spot position in 1C23 to the isocentre plane

The spot positions recorded in 1C23 must be converted back to the isocentre plane
for direct comparison with the spot positions defined by the TPS system. This conversion
is performed using the equivalent triangle method, as described in Figure 5.2. The
calculation for the equivalent triangle method requires parameters such as the distance from
the isocentre to the centre of each scanning magnet, referred to as the source-to-axis
distance (SAD), and the distance from the IC23 plane to the centre of each scanning

magnet.

While the SAD values are identical for all gantries, slight variations exist in the
distance from the IC23 plane to the scanning magnet centres. These values are summarised
in Table 5.1. The script incorporates these differences to accurately convert the spot
positions recorded in IC23 to the isocentre plane.
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Table 5.1: The tabulation of different distance values for the calculation of spot position

conversion from the 1C23 plane to the isocentre. GTR- represents each gantry.

Distance from the isocentre to the centre of each scanning | Distance from
magnet IC23 plane to
scanning
(same for all
gantries)
X 1239.9 1236.6 1241.3 1835.5
scanning
magnet
Y 1657.5 1653.7 1657.9 2214.2
scanning
magnet
_Virtual centre (Source) of_’ b £ Te
Scanning magnets " @ oEw E
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Figure 5.2: Equivalent triangle method. This method converts the spot positions from the

isocentre plane to the 1C23 plane.
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5.2.4 Range calculation

The energy value of each spot is transferred from the TPS to the Mosaiq OIS and
subsequently to the IBA beam delivery system. The IBA delivery system converts this
energy into a range value using Equation 3.3 provided in Chapter 3, Section 3.2.5. The

calculated range represents the penetration depth of the proton beam in water.

The nozzle head includes a thin copper window to protect equipment from physical
damage. However, this protective layer causes minor attenuation of the proton beam. The
WET of this protective sheet must be considered when calculating the range of each spot
provided by the TPS. The IBA specification file records the range of each spot by
subtracting the WET of the nozzle entrance window.

To determine the actual range or energy recorded in the specification file, the WET
of the entrance window must be added back to the range recorded in the file. The WET of
the nozzle entrance window is energy-dependent and is calculated using a third-order
polynomial equation. Since the thickness of the entrance window varies slightly between
the three gantries, the coefficients of the polynomial equation differ for each gantry. The

specific coefficients are provided below.

WET (Nozzle entrance )inmm = aR3 + bR* + cR + d (5.1)
Where R is the range of the spot at the nozzle entrance.
The Coefficients for different gantries are tabulated in table 5.2.

Table 5.2: The coefficients of equation 5.1 for different gantries. GTR- Gantry.

Coefficients a b C d

GTR1 -1.7E-05 7.5E-04 -4.7E-03 1.8E-01
GTR2 -8.0E-06 3.5E-04 -7.2E-04 1.9E-01
GTR3 -8.0E-06 3.5E-04 -71.2E-04 1.5E-01

The in-house script uses this information to calculate the range of each spot

delivered and recorded in the log file, which is then compared with the range specified by

the TPS.
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5.2.5 Spot size calculation

The spot size for each range or energy has a baseline value that remains consistent
across all gantry angles for a specific energy. This baseline spot size is inherently linked to
the range, with the spot size typically decreasing as the range increases. In the log file
analysis, ML models are employed to predict the spot size in both the X and Y axes for all
spots irradiated in the beam. These predictions are based on the irradiation data captured in
the log files. However, to make meaningful comparisons between the predicted spot sizes
and the actual measurements, a baseline spot size value is required. This baseline value,
representing the expected spot size for a given energy or range, is calculated using an
analytical equation 5.2. The equation accounts for the relationship between the energy or
range and the corresponding spot size, providing a reference for comparison with the ML
model's predicted values. The equation for calculating the baseline spot size is given below

Spot size(mm) = aE* + bE® + cE* +dE +e (5.2)

E-Energy in MeV and the coefficients are, a = 5.47E-09, b = -4.03E-06, ¢ = 0.001172, d=
-0.1715, and e= 14.03009.

The in-house script calculates the baseline spot size for each spot specified in the
specification file using the provided equation and the corresponding spot's range
information. It then compares these baseline spot size values with the spot sizes predicted
by the ML model.

5.3 Results
5.3.1 Nozzle WET calculation

The script utilises Equation 5.1 to calculate the nozzle WET and determine the
range of each spot during log file analysis. As shown in Table 5.3, the calculated nozzle
WET values for five selected energies are presented for all three gantries. The log file
records the machine name, which is used to identify the machine and apply the

corresponding coefficients tabulated in Table 5.2 for nozzle WET calculation in the script.

As presented in Table 5.3, the maximum calculated WET value of the nozzle

entrance window is 0.27 mm for an energy of 200 MeV. This finding highlights the
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importance of correcting the range values recorded in the log file using the nozzle WET
value. Such corrections are critical for accurately determining the actual range of each spot,
especially when comparing these values with TPS data. The TPS computes the beam range
in water as it passes through the nozzle head. To ensure consistency in this comparison, the
beam range derived from TPS energy data is matched against the nozzle WET-corrected
range recorded in the log file. This correction involves subtracting the nozzle WET value
from the range recorded in the log file, ensuring an accurate depiction of the actual range

for each spot.

Table 5.3: Provided the calculated nozzle WET values for different energies for all three

gantries.
Energy (MeV) | Range (g/cm?) Calculated Nozzle WET values
GTR1(mm) GTR2 (mm) | GTR3 (mm)
70.18 4.1 0.17 0.19 0.15
100 7.72 0.18 0.20 0.16
150 15.78 0.23 0.23 0.19
200 25.4 0.27 0.27 0.22
226.2 32.02 0.24 0.26 0.22

5.3.2 The Automated script workflow

The in-house script automates the analysis of spot dosimetric parameters for an
irradiated beam using log file data and ML models. The irradiation log files, along with the
specification files, are processed by the script, which converts the data into meaningful spot
dosimetric parameters, as described in the methods section. The script tabulates the
converted spot position and MU values for each spot from the irradiation file. Additionally,

it creates a table of input data for the ML models to predict spot size information.

Each ML model is executed, and the predicted spot size values are tabulated
alongside the baseline spot size values. The script compares the predicted values with the
TPS-specified data and the irradiation data to assess the accuracy of the spot dosimetric
parameters. The predicted spot size values along the Major and Minor axis are used to
calculate the spot symmetry using the equation provided below.

(Spot size Major axis—spot size along Minor axis)

spot symmetry = x100 (5.3)

(Spot size Major axis+Spot size along Minor axis)
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This approach can be used to automates the analysis of spot dosimetric parameters
for thousands of spots in each irradiated beam of a patient-specific treatment plan. The

workflow of the in-house tool is shown in Figure 5.3.

‘ Schematic Diagram of the Steps Invalved in PBS Machine Performance Evaluation

Extraction of log files for each fraction from the database

!

Extraction of input variables for the spot
size prediction Machine Learning{ML)

Extraction of spat position and MU
information from log files using an in-house

script models
ML models are used for predicting spot size
along different axes such as X, Y, majar, and
minar axes
Comparisan of spot pasition and MU values ¥

with their corresponding treatment planning

system (TPS) values Comparison of X and Y Spot Sizes with

Baseline Values and Calculation of Spot
l Symmetry Using Major and Minor Axis Spot

Sizes

Evaluating beam delivery accuracy by analysing differences in spot size,
position, symmctry, and MU compared to the specificd valucs.

Figure 5.3: The Illustration of the steps involved in the log file analysis using the In-house

automated tool.

5.3.3 Report generation

The in-house script generates a comprehensive final report based on the data
analysis. This report includes key details such as the total number of layers, the spots in
each layer, the MU of each layer, the total MU of the beam, and the percentage of spots
with variations in spot size, position, symmetry, and MU. Specifically, the report highlights
the percentage of spots with a variation of less than 10 %, spot position variation within 1

mm, spot symmetry below 10 %, and MU variation of less than 2 %.

A sample report is illustrated in Tables 5.4, 5.5, and 5.6. These tables represent the
output format produced by the in-house script after analysing the irradiated beam's log file
data. All the values shown in these tables are based on the sample data extracted and
processed by the script.
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Table 5.4: Sample data table illustrating the total number of spots, layers, and MU. This
table represents the format generated by the in-house script when processing the irradiated

log file data of a beam. * All values are sample values only.

Parameters Value *
QA plan name XXXXXX
Beam Name XXXXX
Total number of layers in Plan 22

Total number of layers irradiated 22

Total number of spots in Plan 1107
Total number of spots irradiated 1104
Difference in number of layers 0

The difference in the total number of spots 3

Total MU (TPS) 263.98
Total MU (Irradiated) 263.49
Difference in delivered MU -0.49

Table 5.5: Sample format of the table displaying spot information for each layer. This table
represents the structure generated by the in-house script when processing the log file data

for a patient’s treatment beam. * All values are sample values only.

Range Energy No. of | MU/Layer * Number of spots Irradiated
(cm)* | (MeV)™* | Spots. * Irradiated per layer * | MU/Layer *
11.36 124.41 12 5.93 12 5.92
10.98 122.01 18 6.63 18 6.61
4.93 77.81 13 2.5 12 2.49

Table 5.6: Sample table displaying the results of spot parameter analysis, including the
percentage of spots in the beam with spot size differences of less than 10 %, spot symmetry
of less than 10 %, spot position errors within 1 mm, and MU per spot variation of less than

2 %. * All values are sample values only.

Parameters Sample Value (%)*
Spots with X spot size variation within 10 % 90.3
Spots with Y spot size variation within 10 % 93.1
Spots with 2D symmetry less than 10 % 935
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Spots with X position variation within 1 mm 92.0
Spots with Y position variation within 1 mm 95.0
Spots with MU variation within 2 % 98

All the above tables represent sample data produced as an output of the in-house

script after analyzing the irradiation log file data.
5.4 Discussion

The PBS proton therapy treatment involves thousands of spots per beam, making it
impractical and cumbersome to measure and analyse the dosimetric parameters for each
spot individually. Ideally, if all the spots in a treatment beam meet the tolerance criteria and
all dosimetric parameters are within specified limits, the beam irradiation would be
considered accurate and complete. However, measuring these parameters for every spot
using a dedicated dosimeter is practically impossible, requiring significant beam-on time
and manpower. Consequently, the conventional approach for PSQA involves measuring
dose planes at various depths and performing gamma analysis [9]. While this method
provides a convenient tool for PSQA, it often struggles with the complexity of highly
modulated dose distributions in intensity-modulated proton therapy, frequently failing to
detect clinically significant discrepancies. Moreover, this process requires substantial setup

time and consumes valuable clinical treatment time [10].

The need for a fast and reliable tool for PSQA in proton therapy has driven the
development of MC-based PSQA systems that utilize log files as input parameters [3, 4,
5]. This approach reduces the reliance on dedicated dosimeter measurements and
minimizes beam-on time, though it necessitates a GPU-based system for rapid dose
calculation. Additionally, gamma analysis is employed for dose evaluation. A study by
Ates et al. [8], which analyzed six years of patient data, demonstrated that log file analysis
can serve as a valuable tool for machine performance evaluation. However, the
uncertainties associated with log file data must be carefully considered before it can be

adopted as a comprehensive analysis tool in proton therapy.

This chapter discusses the development of an in-house tool designed to analyse the
dosimetric accuracy of all spots within a treatment beam using log files and ML models.

The implementation of this automated, script-based tool represents a substantial
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advancement in QA processes for PBS proton therapy systems. By addressing challenges
related to non-beam-matched gantries in the IBA Proteus Plus system—such as variations
in spot size, range, and source-to-detector distances—this tool integrates system-specific

configurations to enhance its applicability.

The automated extraction of key parameters, including spot size, position, and MU,
facilitates efficient and precise analysis, significantly reducing the time required compared
to manual methods. This streamlined approach supports proactive identification and
correction of discrepancies, ensuring compliance with QA standards, such as AAPM-
TG224 [11]. The integration of ML models further enhances the tool's capability to
optimise dosimetric accuracy, thereby strengthening its role in modern QA frameworks for

proton therapy.

5.5 Conclusions

In conclusion, this chapter summarises the development of the in-house automated
tool that integrates log file data and ML models, marking a significant advancement in
ensuring the accuracy and efficiency of proton therapy beam delivery. This tool enables
quick and comprehensive analysis of PSQA beams, allowing for the prompt identification
of discrepancies and ensuring adherence to QA standards. By improving the precision of
beam delivery evaluation, the methodology has the potential to streamline PSQA and

machine QA processes, ultimately contributing to enhanced patient outcomes.

Chapter 6 will provide a detailed exploration of the application of this in-house tool
for PSQA and machine QA, focusing on its role in validating the beam delivery accuracy

of the IBA Proteus Plus system.
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Title: Application of the In-House Automated Tool for Patient-Specific and Machine
Quality Assurance in Proton Beam Therapy Using Log Files and Machine Learning
Models.

6.1 Introduction

Achieving precise treatment delivery, as outlined by the TPS, is essential for
optimal clinical outcomes in radiotherapy [1]. In PBS proton therapy, proton spots are
delivered dynamically with varying energies and positions to construct the planned dose
distribution layer by layer. Robust QA protocols are crucial to ensure that the machine
delivers treatments as intended, verifying parameters against the treatment plan and
addressing errors before they affect patient outcomes. The precision required in PBS,
involving thousands of spots, makes meticulous QA a cornerstone of effective and safe
proton therapy. [2]. The AAPM-TG-224 report [3] highlights the necessity of routine
verification of beam parameters and PSQA. Spot profiles, which play a pivotal role in
determining dose distribution accuracy, depend on the beam optics, which are meticulously
optimised during machine installation and commissioning [4]. Although the baseline spot
size for each energy is designed to remain consistent across all gantry angles, minor
variations can arise due to adjustments in beam optics for specific energy and angle
combinations. Consequently, routine QA protocols are designed to evaluate spot size,

position, and symmetry for selected energies and angles.

In clinical scenarios, treatment fields comprise thousands of proton spots with
varying energies, closely arranged to ensure uniform dose coverage and adequate
distribution to the target. Conventional QA equipment lacks the capability to directly verify
the dosimetric accuracy of every individual spot within a treatment field. As a result,
standard PSQA procedures rely on array detectors to measure dose fluence at fixed gantry
angles, with the evaluation commonly performed through gamma analysis [5]. However,
this method is labour-intensive, limited to specific gantry angles, consumes significant
beam-on time, and may not reliably represent the dosimetric accuracy at the actual

treatment angle during patient delivery [6,7].

Given these challenges, many centres have transitioned to MC methods to enhance
PSQA by leveraging data from irradiation log files [8-10]. MC algorithms extract essential

spot data, including positions and MU values, from these log files to calculate the delivered
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dose. Numerous studies have investigated the accuracy of the spot position and MU data
recorded in log files [11-13]. For instance, Noufal et al. [14] demonstrated that random
errors in spot positions could significantly impact dose delivery, potentially affecting both
target coverage and sparing of normal tissues. Furthermore, variations in spot size can
introduce in homogeneities in dose distribution, leading to suboptimal treatment outcomes
[15]. In PBS proton therapy, inconsistencies in beam transport and extraction systems can
result in delivered spot sizes deviating from their planned values, risking underdoing of the

target or overdosing of nearby critical structures [16—19].

While MC and log file-based PSQA methods are effective for verifying specific
beam parameters, they do not address variations in the delivered spot sizes. Typically, spot
size data recorded in log files are derived using Gaussian fitting of signals from strip
ionisation chambers. However, these recorded values frequently show poor correlation with
the actual spot sizes measured using high-resolution scintillators. These inconsistencies
complicate the direct analysis of spot size data from log files, underscoring the necessity
for more advanced methodologies to ensure accurate dosimetric evaluation and improve

treatment precision.

The ML has emerged as a transformative technology in radiation therapy, with an
increasing number of studies exploring its potential for predicting dosimetric parameters
and automating QA processes [20-23]. Several investigations have successfully employed
ML models to predict spot positions and MU values using irradiation log files as input data
[24,25]. However, ensuring accurate PBS treatments requires a more comprehensive
evaluation of all spot parameters, including spot size, symmetry, position, and MU for each
spot in a treatment field. Despite progress in ML applications, a fully integrated ML-based
approach that systematically assesses all these parameters for every individual spot within

a treatment field is still lacking.

In Chapter 3, a comprehensive analysis was conducted to compare the spot
parameters recorded in log files with those measured using a high-resolution scintillator
detector. The findings revealed a linear correlation between the log file data and scintillator
measurements. However, the accuracy of the log file data remains questionable for direct
use in machine performance evaluation or machine QA, as inherent data limitations affect

its reliability. Chapter 4 focused on developing ML models to predict spot dosimetric
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parameters using log file data as input. These ML models demonstrated high predictive
accuracy, effectively addressing discrepancies in log file data and serving as a robust tool

for machine QA.

Chapter 5 combined the capabilities of the ML models and log file data analysis
into an in-house automated tool. This tool was designed using scripts to facilitate
comprehensive log file evaluation. It enabled the extraction of significant data from log
files, segregation of input parameters for the ML models, automated prediction of spot
parameters, generation of beam-specific reports, and analysis of all spot dosimetric

parameters.

This chapter summarises the application of the in-house tool for evaluating beam
delivery accuracy using routine QA beams and PSQA beams. Log file data from multiple
beams, recorded during the PSQA procedures were collected and analysed using an in-
house automated tool. The results demonstrated that this method could serve as a potential
solution for machine QA, PSQA and the performance evaluation of the IBA Proteus Plus
proton therapy system. The tool offers a time-efficient and resource-effective alternative to
conventional PSQA methods by enabling the analysis of all spot parameters in treatment
beams without requiring dedicated dosimeters. This approach not only reduces beam-on
time and manpower but also eliminates the complexities associated with traditional PSQA

procedures.
6.2 Materials and Methods
6.2.1 Data collection

The performance of the in-house tool was evaluated using routine machine QA data.
It was also employed to analyse the accuracy of PSQA beams by processing irradiated log

file data collected post-irradiation.

The routine QA analysis of the IBA Proteus Plus PBS machine focused on spot
dosimetric parameter accuracy using a 5-spot pattern across 30 different energy levels, with
a range interval of 1 gm/cm2. The energy range varied from 70.18 MeV (corresponding to
a range of 4.1 gm/cm?) to 226.2 MeV (corresponding to 32.0 gm/cm?2). These QA
measurements were conducted using a Lynx2D scintillator detector. For each energy level,
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the same 5-spot pattern was measured at 12 different gantry angles with gantry angle
intervals of 30°. The IBA Proteus Plus machine is equipped with three gantries, and QA
was performed on all three to ensure spot accuracy. Data from all three gantries were
collected over three months from August 2023 to October 2023, resulting in a total of 1080
spot patterns and a total of 5400 spots and their corresponding log file data for subsequent

analysis using the in-house tool.

For the PSQA beams, log file data were collected from PSQA procedures conducted
before actual patient treatments. During PSQA, each treatment plan typically consisting of
2 to 5 beams are recalculated in a virtual water phantom within the TPS and delivered to
an actual water phantom. Dose measurements at various depths are acquired using a
dedicated matrix ionisation chamber array detector. Log files corresponding to these beams
were recorded during the PSQA water phantom measurements, capturing detailed
irradiation parameters. Over a period of 10 months, from August 2023 to May 2024, a total
of 935 beam log files were gathered and subsequently analysed using an in-house
automated tool. Each beam contains thousands of spots, and in total, approximately 3
million spots were analysed using the in-house tool, providing a comprehensive dataset for
evaluating beam delivery accuracy and ensuring the reliability of the treatment process.
The ethical clearance (DYPMCK/11/2022/IEC) obtained before taking data. Table 6.1
summarizes the statistical data from the 935 PSQA beams analysed in this study. Key
parameters include the number of layers per beam, the energy span, the MU per spot, and
the spot position range. This statistical overview provides insights into the characteristics

of the treatment beams, offering a comprehensive understanding of the data.

Table 6.1: Summary statistics of beam parameters analyzed in this study. The number of

layers, Energy range, spot size range, spot position in X and Y directions and MU per spot.

Beam mean | Standard | Minimu 1st 2nd 3rd Maximu
parameters Deviation m Quartil | Quartil | Quartil m
e e e
(25%) | (50%) | (75%)
Number of 14.10 7.66 1.00 8.00 13.00 19.00 50.00
layers
Energy (MeV) | 140.8 28.70 75.41 119.01 | 140.82 | 163.72 | 203.24
1
Spot size (mm) | 4.13 0.65 3.08 3.60 4.02 453 6.20
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Spot position | -1.17 38.81 -132.46 | -27.36 | -0.34 | 25.77 111.67
at Isocentre - X
direction(mm)
Spot position | 2.19 35.93 -121.06 | -21.46 | 2.64 27.34 86.14
at Isocentre - Y
direction (mm)
MU per spot 0.11 0.12 0.01 0.04 0.06 0.13 2.71

6.2.2 Data Processing

All the machine QA log file data and PSQA beam log file data were retrieved from
the data recorder folder of the IBA beam delivery system after beam irradiation. The
recorded log files were unzipped and processed using the in-house tool described in Section
5.3.2 of Chapter 5. This tool enabled the reading and extraction of relevant data, applied
ML models to predict spot dosimetric parameters, and generated comprehensive reports

summarising the analysis results.

For machine QA, the predicted spot size values in the X and Y directions and the
spot position accuracy of each spot were assessed by comparing log file recorded data with
both measured data and ML model predictions. For patient treatment beam data analysis,
the in-house tool generated a report for each beam, which was segregated and evaluated to
determine the percentage of spots within each gantry angle interval meeting accuracy
criteria for spot position, size, symmetry, and MU. The extracted data was compared with
the TPS-specified values. A box and whiskers plot was used to visualise the results. Spots
with spot size variation less than 10 %, position differences within 1 mm, symmetry within
10 %, and MU differences within 2 % were evaluated based on the tolerances specified by
AAPM TG224.

6.3 Results

6.3.1 Machine QA data

The log files of monthly QA data of all three gantries were analyzed using the in-
house tool and compared the predicted spot size values and extracted spot position values

with the Lynx 2D measured data. The results are tabulated in Table 6.2.
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The log file extracted spot positions are closely matching with the measured spot
positions and the spot size values predicted by the ML models are closely matching with

the measured spot size values.

Table 6.2: Comparison of spot parameters using the 5-spot pattern for machine QA:
measured, predicted, and log file-recorded spot sizes (X and Y axes) along with measured
versus log file-recorded spot positions. Mean and standard deviation values across 12

gantry angles are presented.

Spot Size Comparison (Measured vs Log File
Recorded vs ML Model Predicted) The difference in Spot
Percentage Difference | Percentage Difference position(mm)
in X spot size (%) in'Y spot size (%)
Spot Spot
(Measured | (Measured | (Measured | (Measured | Position in | Position
vs. Log VS. vs. Log VS. the X axis | intheY
Gantry File) - Predicted) File) - Predicted) | (Measured axis
angle Mean —Mean | Mean (SD) | - Mean vs. Log | (Measured
(Degre) (SD) % (SD)% % (SD) % file) — vs. Log
Mean file) —
(xSD) Mean
(xSD)
0 1.16 (7.84) | 0.08 (1.17) | 2.00(6.24) | 0.81(1.05) | 0.37(0.33) | 0.37(0.38)
30 1.09 (7.21) | 0.27 (1.15) | 0.74(7.08) | 1.24(1.01) | 0.38(0.33) | 0.38(0.39)
60 0.81(7.82) | 0.32(1.02) | 0.83(6.23) | 0.97 (1.03) | 0.37(0.32) | 0.38(0.39)
90 1.76 (7.44) | 0.11(1.04) | 3.02(6.58) | 0.58 (1.13) | 0.38(0.32) | 0.38(0.39)
120 2.07 (7.45) | 0.12(0.97) | 2.66 (6.57) | 0.82 (0.91) | 0.37(0.32) | 0.37(0.37)
150 0.98 (8.26) | 0.57 (1.61) | 1.11(7.27) | 1.05(1.12) | 0.40(0.31) | 0.40(0.37)
180 1.09 (8.61) | 0.41 (1.37) | 2.26(6.25) | 1.19(1.19) | 0.39(0.31) | 0.39(0.37)
210 2.21(7.59) | 0.25(1.33) | 4.01(6.47) | 0.57 (1.58) | 0.47(0.28) | 0.43(0.33)
240 2.16 (7.63) | 0.45(1.07) | 3.67(7.32) | 0.77 (1.39) | 0.37(0.31) | 0.38(0.36)
270 3.63(7.66) | 0.17 (1.57) | 1.08(7.47) | 1.11 (1.36) | 0.44(0.28) | 0.44(0.35)
300 1.12 (7.71) | 059 (1.07) | 0.97 (7.26) | 1.21(1.19) | 0.38(0.33) | 0.38(0.39)
330 3.67(8.06) | 0.72(1.18) | 0.69 (6.98) | 1.00 (0.96) | 0.37(0.32) | 0.37(0.37)
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The analysis demonstrated a high level of agreement between the measured and
recorded spot positions. On average, the difference between the measured and log file-
recorded positions across all gantry angles was under 0.5 mm, with a standard deviation
below 0.4 mm for both the X and Y axes. This indicates that the spot positions documented
in the log file align closely with the measured values, confirming an accuracy of within 0.5

mm for the log file spot positions.

The spot size values comparison is also tabulated in Table 6.2. This analysis
highlights the percentage differences between the measured and log file-recorded spot sizes
and those between the measured and ML model-predicted spot sizes for both X and Y
directions. The measured and log file-recorded spot sizes exhibited notable discrepancies,
with mean differences ranging from 0.7 % to 4.0 % and standard deviations between 6.3 %
and 8.6 % across all gantry angles. In contrast, the comparison between measured and
predicted spot sizes showed much closer alignment, with mean differences between 0.5 %
and 1.25 % and standard deviations from 0.9 % to 1.6 %. These findings demonstrate a
stronger agreement between measured and predicted spot sizes, whereas the measured and
log file-recorded spot sizes displayed greater variability. Additionally, the calculated spot
symmetry for all spots, based on the predicted major and minor axis spot sizes, was below
10 %. When compared to the measured spot symmetry, the difference was less than 1 %,
confirming the high accuracy of the predicted symmetry values. Also, the MU per spot for
each 5-spot pattern was compared to the values recorded in the log file, revealing that all

differences were within 1 % of the specified MU per spot values.

Figure 6.1 presents a plot of Lynx2D-measured spot sizes versus ML model-
predicted and log file-recorded spot sizes for the X-direction. The comparison reveals a
strong correlation between the measured and predicted spot sizes, while the log file-
recorded values show more noticeable deviations from the measured data. Figure 6.2, on
the other hand, illustrates the same comparison for the Y-direction spot sizes. Like in Figure
6.1, the plot shows that the ML model-predicted values align closely with the measured
spot sizes, whereas the log file-recorded values exhibit greater discrepancies. These figures
provide a clear visual representation of the accuracy of the ML models and highlight the
variation observed in the log file-recorded spot sizes, underscoring the effectiveness of the

ML models in accurately predicting spot size values.
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Scatter Plot of Measured X Spot Size vs Predicted and Log File Recorded
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Figure 6.1: The plot of measured spot sizes versus ML model predicted (Blue) and Log file

(Red) recorded X spot size.

Scatter Plot of Measured Y Spot Size vs Predicted and Log File Recorded
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Figure 6.2: The plot of measured spot sizes versus ML model predicted (Blue) and Log file
recorded (Red) Y spot size.
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6.3.2 PSQA Beam Data Analysis
6.3.2.1 Spot position

The study compared 935 PSQA beam data using the automated script. The X and
Y spot positional differences versus different gantry angle intervals are plotted in Figures

6.3 and 6.4, respectively, using box-and-whisker plots.

The comparison indicates that 99.5 % of spot positions are within a 1 mm margin
in the X and Y directions. For the 60°-90° gantry angle interval, a few spots showed a Y
positional error of more than 1 mm. Over 95 % of spots demonstrate position accuracy
within 0.5 mm. The mean and standard deviation of X positional error were -0.021 mm and
0.181 mm, respectively, and for Y positional error, the mean and standard deviations were
-0.002 mm and 0.132 mm, respectively. These findings highlight the machine's excellent
and consistent performance in spot position accuracy across varying gantry angles. It aligns
well with the AAM-TG 224 recommended tolerance of 1mm for spot position accuracy.

Spot positional error along X axis vs Gantry Angle Intervals
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Figure 6.3: Box plots show the X positional error in different gantry angle intervals.
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Spot positional error along Y axis vs Gantry Angle Intervals
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Figure 6.4: Box plots showing Y positional error in different gantry angle intervals.

6.3.2.2 Spot size and symmetry

The spot size for each spot in the 935 PSQA beam dataset was predicted using log
file data as input to the ML models. The prediction covered spot sizes along different
directions, including the X, Y, major, and minor axis directions for each spot in the
irradiated beam. These predicted spot sizes were then compared to the baseline spot size
for each energy.

To assess the accuracy of the predictions, the percentage of spots with spot size
variations less than 10 % from the baseline was calculated for each beam. Figures 6.5 and
6.6 present box plots illustrating the percentage of spots in which the spot size differences
in the X and Y directions were within 10 % across different gantry intervals, respectively.
In the X-direction (Figure 6.5), spot size variation remained within 10 % for over 92 % of
spots in all gantry intervals, except in the 150°-180° range. Similarly, Figure 6.6
demonstrates that more than 95 % of spots in each gantry angle interval showed a Y-
direction spot size variation of less than 10 %, except the 270°-300° gantry interval.

The RMSE values for the X and Y spot sizes were 0.15 mm and 0.16 mm,

respectively. These results indicate that the predicted spot sizes for each pencil beam at all
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gantry angles remain within acceptable limits, confirming the accuracy and reliability of

the ML models in predicting spot size variations across different beam angles.

Percentage of spots (X-spot size variation < 10%) vs Gantry Angle Intervals
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Figure 6.5: The box plot of the percentage of spots in each gantry angle interval has an X

spot size variation of less than 10 % from the baseline values.
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Figure 6.6: The box plot shows the percentage of spots in each gantry angle interval with a
Y spot size variation of less than 10 % from the baseline values.

131



Chapter 6

The number of spots in different energy intervals was also assessed. Figure 6.7
displays a histogram of spots across various energy intervals. The majority of spots are
belonging to the 130-160 MeV energy range. For each energy interval, the percentage of
spots with a spot size variation of less than 10 % and greater than 10 % is plotted. The
middle energy intervals, particularly between 130 and 160 MeV, exhibit a higher
proportion of spots with spot size variations exceeding 10 %. In contrast, for all other
energy intervals, less than 10 % of spots show spot size variations greater than 10 % for
both the X and Y directions.
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Figure 6.7: Histogram of the number of spots in each energy interval, with each bar divided
into the percentage of spots with spot size variation less than 10 % and those with spot size

variation greater than 10 % of baseline spot size.

Focusing solely on spot size in the X and Y directions may provide limited insight
into the elliptical nature of the spot. Therefore, assessing spot symmetry along the major
and minor axes is an essential part of routine quality checks. In this study, the symmetry of
all spots irradiated in the beam was calculated using the predicted spot sizes along the major

and minor axes. The tolerance for spot symmetry is 10 %, as specified by TG 224.

The results showed that all spots across the beams exhibited spot symmetry within
the 10 % tolerance. The highest observed spot symmetry deviation was 9.8 % for the 100
MeV beam at a gantry angle of 30° indicating that the spots met the required quality
standards for symmetry in proton therapy.
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6.3.2.3 Monitor unit accuracy

In the Proteus plus PBS system's clinical settings, the minimum and maximum
deliverable MU are 0.02 MU and 12 MU, respectively. The study analysed data from 3
million spots across 935 PSQA beams. The MU per spot ranged from a minimum of 0.02
MU to a maximum of 2.71 MU.

The in-house script was employed to extract the charge collected by the nozzle
ionization chamber, correcting it for temperature and pressure, to calculate the MU for each
spot. These calculated MU values were compared with the TPS-specified MU values.
Figure 6.8 presents a box plot showing the percentage of spots in each gantry angle interval
with an MU variation of less than 2 % between the delivered and TPS-specified MU values.
In all gantry intervals, over 95 % of the spots had an MU variation of less than 2 %, except
for the 120-150° gantry interval.

The mean MU difference was found to be zero, with a standard deviation of 0.009
MU. Additionally, the MU variation for all evaluated spots was less than 0.1 MU. Figure
6.9 illustrates a scatter plot of the total MU difference for each beam, with the total MU per
beam ranging from 35.31 MU to 768.3 MU. The maximum difference between the
delivered and prescribed beam MU was under 3.5 MU, representing less than 0.5 % of the
total MU for each beam. These results indicate a high level of precision in the MU delivery

process within the PBS system.
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Monitor Unit Difference Between Planned and Delivered Beams
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Figure 6.8: The box plot shows the percentage of spots in each gantry angle interval with a
Monitor Unit (MU) difference of less than 2 %.

Figure 6.9: Scatter plot Showing the difference of Monitor Unit (MU) between planned and

delivered beams.

6.4 Discussion

At our institute, the standard approach for evaluating beam delivery accuracy
involves conducting PSQA prior to the first fraction of treatment. This process includes
measuring dose fluence and performing gamma analysis using a 2D array detector.
Additionally, for spot dosimetric parameter evaluation, conducted 5-spot pattern
measurements at different energy levels and gantry angles using the Lynx2D scintillator
detector. These methods ensure accurate assessment of the beam's dosimetric parameters;
however, they are time-consuming and require dedicated equipment, specialised

dosimeters, and software for data measurement and analysis.

The current study, however, proposes a more time-efficient and streamlined
alternative for analysing beam delivery parameters, utilizing in-house developed scripts
and ML models. By leveraging irradiation log files, can accurately predict key dosimetric

parameters such as MU, spot size, symmetry, and position, without the need for direct
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measurements or specialized dosimeters. This approach simplifies the analysis process
while maintaining high accuracy, offering a more practical solution for routine QA in

proton therapy.

In PBS, key parameters like MU, spot size, symmetry, and position play a crucial
role in determining the accuracy of dose delivery. The study analysis focused on comparing
the TPS-calculated MU per spot with the corresponding values recorded in the irradiation
log files. The comparison revealed a mean difference of zero and a standard deviation of
0.009 MU, which indicates excellent agreement between the delivered and specified MUs.
Furthermore, more than 95 % of the spots exhibited an MU variation of less than 2 %,

reflecting the high precision of the PBS system.

The study also evaluated the positional accuracy of spots in both the X and Y
directions by comparing the log file-recorded positions with those specified by the TPS.
Over 95 % of spots showed positional differences of less than 0.5 mm, with the standard
deviations of the X and Y spot position errors being 0.181 mm and 0.132 mm, respectively.
These results confirm that the spot positional errors are well within the 1 mm tolerance

limit set by TG224, ensuring accurate delivery of radiation to the targeted area.

The findings are consistent with those reported by Maes D et al. [24], who observed
similar spot position accuracy, with standard deviations of 0.39 mm and 0.44 mm for the
X and Y directions, respectively. This agreement further validates the robustness of in-
house analysis method and its potential for routine use in proton therapy quality assurance.
The adoption of this log file-based approach, powered by ML models, not only enhances
the efficiency of spot parameter evaluation but also maintains the high standards required

for clinical practice.

Toscano et al. [11] assessed the spot positional accuracy on the IBA Proteus Plus
machine using standardized spot patterns, and their findings indicated a spot positional
error of less than 0.6 mm in both the X and Y directions. This aligns with the results from
Li et al. [13] and Ates O et al. [12], who evaluated spot position errors in proton therapy
systems using log file data from the Hitachi PROBEAT machine (Hitachi, Ltd, Tokyo,
Japan). Li et al. [13] analysed the log file data from 14 patients and reported standard

deviations of 0.26 mm for the X positional error and 0.42 mm for the Y positional error.
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Their study also demonstrated that the total MU accuracy remained within 0.1 % of the
TPS-specified MU values.

Ates O et al. [12] conducted an evaluation with data from 992 patients, finding
standard deviations of 0.125 mm and 0.175 mm for the X and Y spot positions, respectively.
Furthermore, the standard deviation in the MU difference was found to be less than 0.001
MU, indicating excellent agreement between the log file and TPS values for MU. In another
study, Arjunan M et al. [26] highlighted that random spot positional errors in treatment
plans can lead to significant dose variation, especially in small-sized tumours, compared to
plans involving larger target volumes. This emphasizes the importance of precise spot
positioning in achieving accurate dose delivery, particularly for smaller and more sensitive

targets.

Many studies, including those mentioned above, have utilized log file-recorded spot
positions and MUs for MC-based PSQA calculations. These studies provide valuable
insights into the effectiveness of log file data for evaluating and ensuring the accuracy of

proton therapy treatments, reinforcing the role of log files in modern QA practices.

The results of the current study, when compared to existing literature, confirm that
the spot positions and MU values recorded in the irradiation log files of the IBA Proteus
Plus machine show strong agreement with the TPS-specified values. The analysis revealed
that most spot positions were within a 1 mm tolerance; however, the log file’s beam
interruption threshold is set to 3 mm, which is higher than the 1 mm tolerance
recommended by TG224. This means that the system will not interrupt the beam unless
spot position deviations exceed 3 mm. Consequently, the proposed method, which employs
in-house scripts to verify each spot position individually against the 1 mm tolerance, plays
a crucial role in ensuring the accuracy and performance of PBS systems. The findings
underscore that log file data is a highly effective tool for assessing the accuracy of both

spot positions and MU values in treatment fields.

In addition to assessing spot position and MU, it is essential to evaluate the accuracy
of spot size and symmetry to ensure proper beam delivery. In Chapter 3, it was noted a
weak correlation between the spot size recorded in the log file and the spot size measured
with a scintillator detector. The comparison between measured and log file recorded spot

sizes showed notable variation, with standard deviations ranging from 6.3 % to 8.6 %.
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Possible reasons for this discrepancy include differences in measurement conditions and
resolution. Routine QA measurements for spot size are taken at the isocentre plane using a
2D scintillator detector with a resolution of 0.5 mm. In contrast, the log file records the spot
size at the 1C23 level using a strip chamber with a resolution of 5 mm and employs a
Gaussian fit to estimate the spot size. Furthermore, the log file does not capture the spot
size along the major and minor axes. The lower resolution of the IC23 strip chamber
introduces errors in the spot size measurements. Therefore, the spot size recorded in the log
file may not accurately reflect the true spot size for each spot, and it cannot be relied upon

for evaluating spot size accuracy.

An alternative approach for predicting spot size using ML models with log file data
as input parameters was investigated in chapter 4. The accuracy of these models was
evaluated, resulting in RMSE values of 0.053 mm, 0.049 mm, 0.053 mm, and 0.052 mm
for the X, Y, major, and minor axis spot sizes, respectively. In this chapter, these ML
models were applied to predict the spot sizes for all spots in 935 treatment beams. The
analysis revealed that over 95 % of X and Y spot size values were within 10 % of the
baseline values across all gantry angle intervals. The RMSE for X and Y spot sizes was
determined to be 0.15 mm and 0.16 mm, respectively. Additionally, when evaluating the
5-spot pattern, the difference between measured and predicted spot size values showed a
standard deviation ranging from 0.9 % to 1.6 %. These results highlight the reliability and
accuracy of ML models in predicting spot size within the PBS system, leveraging log file
data as input parameters. Moreover, spot symmetry was assessed along the major and minor
axis directions using the predicted spot sizes, with all spots demonstrating symmetry values

below 10%, which aligns with the TG224 recommended tolerance.

Performing PSQA using dosimeters for each fraction is a challenging and time-
consuming task. Although MC-based PSQA [8,9,10] can be applied across all fractions, it
has several limitations. These include the reliance on spot position and MU data from the
log file, the need for dedicated computing resources to perform rapid dose calculations, and
the inability to account for variations in spot size and symmetry during beam delivery.
While PSQA for a single fraction ensures dose delivery accuracy, subsequent fractions may
experience delivery errors due to variations in spot parameters. The beam delivery accuracy
evaluation method proposed in this study offers a more efficient and practical solution. This

method provides a quick and straightforward approach for evaluating the accuracy of all
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spot parameters such as position, size, symmetry, and MU at the actual beam angle for each
fraction. It can serve as an effective tool for validating the vendor’s beam delivery safety
interlock system and as an alternative to routine spot parameter evaluations or MC-based

PSQA, especially in the context of adaptive treatments where time is a critical factor.
6.5 Conclusions

The proposed log file-based approach offers a time-efficient and accurate
alternative to traditional PSQA methods for evaluating proton beam delivery parameters.
By leveraging in-house scripts and ML models, this method ensures compliance with
TG224 recommendations, enhances QA efficiency, and supports adaptive treatments,
particularly in workflows where time is critical. The findings highlight its potential for
routine QA, enabling precise and reliable assessments of MU, spot size, position, and
symmetry without the need for specialised dosimeters. By streamlining beam delivery
evaluations, this approach not only enhances patient safety and clinical efficiency but also
validates the use of log file data as a robust tool for ensuring dosimetric accuracy in modern

proton therapy practices.
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Chapter 7

Summary and conclusions

The QA process is crucial for ensuring the precision, safety, and effectiveness of
radiotherapy, directly impacting patient outcomes. The adoption of automated, reliable
tools is essential to replace traditional, labour-intensive methods, thus streamlining
workflows without compromising patient care. These tools save time, optimise beam-on
time, and enhance overall efficiency, ensuring timely and accurate treatments for cancer
patients. Medical physicists play a pivotal role in implementing these advanced protocols,
maintaining equipment performance, and upholding the highest standards of radiotherapy

delivery, ultimately improving the effectiveness of the treatment workflow.

Proton beam therapy employs PBS to deliver precisely controlled proton beam
spots, generated by a cyclotron and guided through quadrupole magnets for focusing,
bending magnets for steering, and tuning components for optimal performance. Due to its
complexity, rigorous QA is required to assess dosimetric parameters and the accuracy of
dose distributions. However, both machine QA and PSQA are labour-intensive and time-
consuming. This study focuses on implementing ML-based predictive models for PBS

proton therapy QA.

Chapter 1 provides a comprehensive overview of proton therapy, focusing on its
principles and clinical applications. It delves into the technical specifications of the IBA
Proteus Plus machine with PBS, which was utilised in this study. Additionally, the chapter
introduces the significance of log file data in proton therapy and highlights the role of ML

models in automating machine QA and PSQA processes.

Chapter 2 provides a comprehensive literature review on the development of
particle therapy and the clinical implementation of proton therapy in cancer management.
The review highlights the distinct advantages of PBS proton therapy, particularly its ability
to deliver highly conformal doses with exceptional precision, targeting tumours while
sparing surrounding healthy tissues and critical structures. The layer-by-layer dose delivery
enabled by PBS is especially effective for treating complex tumour geometries and tumours
located near sensitive organs. This approach is particularly advantageous in paediatric
oncology, as it significantly reduces the risk of long-term toxicities and secondary

malignancies. Additionally, PBS delivers lower integral and skin doses, minimising overall
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treatment-related side effects. Its compatibility with advanced techniques, such as IMPT

and adaptive therapy, further ensures superior clinical outcomes in challenging cases.

Chapter 2 also explores the role of log file data in radiotherapy, emphasising its
utility in monitoring and evaluating treatment delivery. Furthermore, it reviews the
application of ML models in automating the QA workflow in radiotherapy, highlighting
their potential to enhance efficiency and accuracy in both machine QA and patient-specific

QA processes.

The irradiation log file data of the PBS system records all beam irradiation-related
information in the machine nozzle head ionisation chambers, along with the parameters of
all the beam-related components. Numerous data points are recorded in the log file during

each beam irradiation, including spot dosimetric data.

Chapter 3 presents a detailed analysis of PBS irradiation log file data and its
correlation with spot parameters measured using the dedicated Lynx2D scintillator
detector. The study involved measuring spot dosimetric parameters using a 5-spot pattern
across various gantry angles and energy levels. Spot sizes along different axes were
measured and compared with the corresponding log file-recorded spot size values.
Additionally, the relative positional errors of the spots in the X and Y directions were
evaluated by comparing Lynx2D measurements with log file data. Various statistical tools
were employed for this correlation study, and the steps involved in log file data extraction

were comprehensively summarised.

The analysis revealed that Lynx2D-measured spot sizes demonstrated deviations of
less than 8% across all energy ranges and gantry angles when compared with the baseline
values and all the values were well within the 10% tolerance specified by AAPM TG224.
Similarly, the spot positional error was less than 0.6 mm, meeting the recommended
standard tolerance limits. However, when comparing log file-recorded spot sizes with
Lynx2D measurements, the maximum difference observed was 23.9%. These findings
indicate that log file-recorded spot sizes and positional data exhibit variations and
uncertainties that exceed established tolerance limits when compared to scintillator-
measured values. This underscores the limitations of relying solely on log file data for QA

processes and highlights the necessity of independent verification using reliable
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measurement tools, such as the Lynx2D detector, to ensure accurate evaluation of spot

dosimetric parameters.

Chapter 4 examines the use of ML models to develop methods for QA in PBS
proton therapy using log file data as input. The chapter details the development and
validation of ANN-based ML models to predict spot sizes along the X, Y, major, and minor
axes, as well as relative positional errors in the X and Y directions. Input parameters for
the ML models were derived from log file data recorded by the nozzle head ICs (1C23 and
IC1), which included spot size and position values, scanning magnet currents for both X
and Y directions, beam current, and gantry angle. The ML model architecture, hyper
parameter optimisation, and validation were thoroughly described, using statistical and

cross-validation techniques to ensure robust performance.

The MLP architecture was used for all six models, with three hidden layers
containing 30 neurons each. The training was conducted over 100 epochs with a batch size
of 30, employing the ReLU activation function and the Adam optimiser. The MSE loss
function guided backpropagation to improve model accuracy. Individual models were
developed to predict spot sizes along each axis and relative positional errors. The ML
models achieved high precision, with RMSE values below 0.05 mm for the spot size
prediction models and RMSE values below 0.03 mm for the positional error prediction
models. The maximum prediction error was under 0.3 mm, and the MPAE remained below
1%. These results align with the AAPM TG-224 tolerance limits of 10% for spot size and

1 mm for positional error.

This study demonstrates the reliability and efficiency of ML models as an
alternative to traditional dosimeter-based QA methods, offering a precise, time-saving

approach that enhances the accuracy and efficiency of PBS proton therapy systems.

Chapters 3 and 4 provided a detailed analysis of log file data, including its
comparison with Lynx2D-measured spot parameters, and described the development and
validation of ML models. Chapter 5 focuses on developing an in-house tool to automate
log file analysis and integrate these ML models. This tool facilitates the prediction of spot
parameters and evaluates the accuracy of all dosimetric parameters for individual spots

within a patient treatment beam using PSQA beam log file data.
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An in-house tool was developed to streamline the process of log file analysis and
enhance the integration of ML models for proton therapy QA. This tool uses custom scripts
to efficiently read and analyse log file data, extract the input variables required for ML
models, and predict spot parameters. The predicted parameters are systematically compared
with the TPS-specified values, ensuring a detailed and accurate evaluation of all dosimetric
parameters. Additionally, the tool generates comprehensive reports and conducts in-depth

analyses, enabling an efficient and automated workflow for QA.

The in-house tool is specifically designed to handle the intricacies of irradiation log
file data. It separates data from the log file and converts spot positions recorded at the IC23
level to the isocentre plane. It also converts the range specified in the specification file into
corresponding energy values, ensuring compatibility with treatment planning and delivery
parameters. Furthermore, the tool calculates baseline spot size values for each spot recorded

in the log file, providing essential reference data for QA checks.

To account for variations in nozzle head specifications across different gantry
systems, the tool incorporates machine-specific details using the machine ID. This allows
precise calculation of spot positions and ranges for each spot, tailored to the unique
characteristics of the gantry. By automating these complex and time-intensive processes,
the in-house tool significantly simplifies data analysis, improves accuracy, and enhances

the overall efficiency of QA workflows in proton therapy.

Chapter 6 discusses the application of the in-house tool described in Chapter 5 to
evaluate the accuracy of dosimetric parameters for machine QA and PSQA beams. The
study used 935 PSQA beam datasets for analysis. Routine QA data was also analysed using
a comparison of Lynx2D-measured data with ML model-predicted data. The data
comparison was conducted for different energies and gantry angles, and the mean
difference between the Lynx2D-measured and ML model-predicted spot size values was
less than 2%, with a standard deviation of less than 1.6%. The results showed excellent
agreement between the predicted and Lynx2D-measured data, indicating that the use of
dedicated dosimeters for routine QA can be replaced with the in-house tool for a quick
check of parameters, without requiring excessive beam time, dosimeter usage, or

manpower.
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The in-house tool was used to analyse 935 PSQA beams, leading to an in-depth
evaluation of all spot parameters for over 3 million spots in total. TPS-specified spot
position, range, MU per spot, and baseline spot size values were compared with the data
extracted from the log files and ML model predictions using the in-house tool. The study
showed excellent results in the analysis. The proposed approach demonstrated strong
agreement between TPS-specified and log file-recorded parameters, with MU variations
for over 95% of the spots remaining below 2% and a standard deviation of 0.009 MU. Spot
positional accuracy was also confirmed, with more than 95% of spots exhibiting deviations
of less than 0.5 mm, with standard deviations of 0.181 mm and 0.132 mm for the X and Y

directions, respectively, well within the 1 mm tolerance.

While the log file data was less reliable for spot size evaluation due to its lower
resolution, ML models provided a robust solution, achieving RMSE values of 0.15 mm and
0.16 mm for X and Y spot sizes, respectively. Additionally, over 95% of spot sizes were
within 10% of baseline values across all gantry angles. This integrated method simplifies
the QA workflow, reduces reliance on direct measurements, and maintains precision,
making it a time-efficient and reliable solution for routine QA and PSQA, particularly in

adaptive proton therapy workflows, where time constraints are critical.

This thesis, titled “Implementation of ML in the Proton Therapy QA”, presents an
in-depth exploration of the application of ML models and log file data to enhance QA in
PBS proton therapy. The study demonstrates that the integration of ML-based predictive
models and a custom-designed in-house tool provides a reliable, efficient, and accurate
alternative to traditional, labour-intensive QA methods. The in-house tool facilitates the
automated analysis of log file data, precise prediction of spot parameters, and
comprehensive evaluation of dosimetric parameters for both routine QA and PSQA beams.
The results validate the robustness of this approach, showing excellent agreement between
ML-predicted spot parameters and dedicated dosimeter measurements, with deviations
consistently within established tolerance limits. This work establishes a novel framework
for leveraging ML in proton therapy QA, significantly streamlining workflows while
ensuring dosimetric precision. The findings underline the transformative potential of this
approach in advancing adaptive proton therapy workflows, optimizing resource utilisation,

and improving patient safety and treatment outcomes.
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Recommendations
Implementation of ML Models for Automation in Proton Therapy QA

This research has detailed and summarised the implementation of ML models to
automate QA in PBS proton therapy. A significant contribution of this work is the effective
utilisation of log file data as input for ML models to analyse all spot dosimetric parameters
of the PBS system, thereby simplifying the QA process. The research highlights the
development and validation of an in-house method that employs ML models and log file
data for PBS machine QA. This method eliminates the need for dedicated dosimeters,
reduces time-consuming measurements, and minimises manpower requirements while also

reducing beam-on time.

The proposed approach significantly enhances the efficiency of QA workflows by
reducing dependency on traditional methods, which often involve extensive manual
measurements and the use of specialised equipment. By leveraging log file data and ML
algorithms, this research ensures that proton therapy machines can be optimally utilised for
cancer treatments without dedicating excessive time to QA and analysis. The automation
of QA and PSQA workflows not only streamlines operations but also minimises treatment

interruptions, ensuring that patients receive timely and uninterrupted care.

Furthermore, the automated system facilitates real-time feedback, enabling early
detection and correction of potential errors. This advancement represents a critical step
forward in improving the precision, reliability, and time efficiency of QA processes in

proton therapy centres.
Recommendations for Integration into Clinical Practice

1. Integration of Developed Tools: To ensure seamless clinical adoption, the
developed tools should be integrated into the existing software environment of
proton therapy systems, such as the IBA Proteus Plus machine. Adding these tools
to the current IBA software will enable real-time data extraction and analysis. This
integration ensures that immediately after each beam irradiation, the QA system can

automatically perform the required analyses using ML models.
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Chapter 8

2. Staff Training: Training clinical staff is crucial to ensure a smooth transition from
traditional QA methods to ML-based automated systems. Dedicated training
programmes should be developed to help medical physicists and radiation therapists

understand the principles of ML tools and how to use them effectively in routine

QA.
Future Research Recommendations

1. Multi-Institutional Validation: To enhance the robustness and reliability of the
developed ML models, future studies should focus on validating the tools across
multiple proton therapy centres. Such multi-institutional studies will ensure that the
models are adaptable to diverse configurations and systems, broadening their utility
and practical application.

2. Development of User-Friendly Interfaces: Intuitive software interfaces should be
designed to make ML-based tools accessible to clinicians and physicists without
requiring extensive technical expertise. User-friendly interfaces will promote wider
adoption and ensure that these tools can be effectively utilised in clinical settings.

3. Extension to Dose Prediction Models: The scope of the study can be extended to
include dose distribution prediction in patient CT scans using predicted spot
parameters. Such an approach will provide detailed information about the actual
delivered dose distribution in the patient CT scan, offering greater clarity in
analysing tumour response and normal tissue toxicity in patients undergoing proton
therapy. Dose prediction models can be developed using advanced deep learning
techniques such as Convolutional Neural Networks (CNNs) and Generative
Adversarial Networks (GANSs). These models would allow for a comprehensive
assessment of treatment efficacy and potential side effects, thus contributing to

improved patient outcomes.

By addressing these recommendations, this study can serve as a foundation for
advancing proton therapy QA processes and expanding the clinical application of ML
models. These steps will ensure that proton therapy continues to evolve as a precise and

efficient treatment modality for cancer patients.
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PURPOSE/BACKGROUND: Machine learning (ML) approaches have evolved as a promising method for
enhancing and automating quality control and machine performance evaluation in advanced radiotherapy
techniques such as Proton beam therapy. Verifying the proton spot characteristics is a crucial quality assurance
(QA) test in Pencil Beam Scanning (PBS) proton therapy. These tests can be performed virtually using the
irradiation log file information rather than physical measurements. By employing ML techniques on log file
information, more robust and efficient QA procedures can be developed, reducing the time and human resources
required. This work focuses on developing and validating an Artificial Neural Network (ANN) model for
predicting spot dosimetric characteristics.

MATERIALS/METHODS: Dosimetric measurements of proton spots were conducted in the energy range of
70.2 MeV to 226 MeV using a scintillation-based detector in the IBA (Ion Beam Applications, Louvain-la-
Neuve, Belgium) proteus plus proton therapy machine. The corresponding irradiation log files were obtained
and compared with the measurement data, revealing certain inconsistencies. An ANN model was developed
using both measured and log file information to address this issue and to improve the accuracy of spot
dosimetric characteristic prediction. The ANN model was fine-tuned by determining the optimal number of
neurons and hidden layers, and the activation function and optimiser were selected through trial and error.
Separate ANN models were created to predict spot size and position. The accuracy of the model's predictions
was evaluated using various statistical tools.

RESULTS :The model's prediction accuracy was evaluated using different statistical metrics such as root mean
squared error, mean squared error, R-Square etc. All the spot size prediction model's RMSE was less than 0.05
mm with R square values greater than 99%. The different normality tests and residual plots show that the model
prediction is unbiased to the input data. The k-fold cross-validation R-square values are greater than 98% for all
the models.

CONCLUSION :A novel ANN-ML model was developed and validated for predicting the spot characteristics
based on log file data. This tool can be used in the clinical setting as a potential solution for automating the PBS

QA.
KEYWORDS: Proton therapy, Machine learning, Quality assurance, Log file analysis.
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The proton radiation therapy is the latest technology in the field of radiation therapy which is
used for cancer treatment [1]. The proton therapy using pencil beam scanning technique [2] require
more precise and accurate quality checks. In this study, we have developed and validated Machine
Learning (ML) algorithms [3] used for predicting the pencil beam proton beam spot size.

In our study, we have developed a multilayer perception [4] "= e

[Artificial Neural Network (ANN) model using the Machine Learning
(ML) platform of python programming language to predict the proton
therapy beam spot size using 1800 irradiation log files. The proton beam
spot was measured using Lynx2D (Scintillator detector) for energies
ranging from 70.18MeV to 226.2MeV. The model was trained using 70%
of the data and validated using 30% data. The Model validated using
various statistical tools. Figure 1: Proton beam spot

The model prediction means the square error is 0.0027mm with
an R-Square value of 0.99. The model was validated using the K fold .
cross-validation method (R-square 0.99). The ML model can be
effectively used for reducing QA time and efficiency.

The developed ML models can be used for effective quality ,
assurance of the proton beam therapy. Thus ensure the safety and T I N Yy -
accuracy of the therapy delivered to the cancer patients. Fig2: Residuals Histogram
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Objective: The analysis of beam delivery accuracy is important in the Proton therapy system.
This study evaluates the accuracy of an in-house tool developed to analyse spot delivery
accuracy evaluation using irradiation log files.

Materials and Methods: This study, conducted on an IBA Proteus Plus machine, developed
an automated Machine Learning (ML) based script to assess the beam delivery accuracy of
PBS beam irradiation. The tool extracts log file data, analyzes spot parameters, predicts spot
sizes for all spots using ML models, and evaluates the accuracy of spot size, symmetry,
position, and MU per spot. A dataset of 500 irradiation beams and routine QA data was
utilized for the evaluation.

Results The ML model predicted spot size values for both X and Y directions, with RMSE
values under 0.12 mm. For patient beam data, 96% of spot position values were within 1 mm,
while all spot positions were within 0.5 mm for machine QA beams. However, the difference
between measured and log file recorded spot size showed a more than 6% standard deviation.
The MU values demonstrated a mean difference of 0.01 MU. Additionally, over 94% of spots
exhibited less than 10% symmetry deviations.

Conclusion: The automated script effectively analyzed the log file data and utilized ML
models to evaluate spot parameters in PBS. This approach is a viable alternative for rapidly
assessing all spot parameters in a patient's treatment beam. Additionally, it can be applied to

evaluate machine interlocks and performance.

Keywords: Pencil beam scanning, Log file, machine learning, QA automation.
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Introduction

Proton therapy is a sophisticated form of radiotherapy that utilises protons to deliver highly
precise radiation to tumours, offering a superior dose distribution profile compared to traditional
photon-based therapies. This precision allows for the sparing of surrounding healthy tissues,
making it particularly advantageous for tumours located near critical structures. Despite these
benefits, proton therapy is still susceptible to patient-specific variations, anatomical changes, and
daily setup inconsistencies, which present significant challenges to consistently delivering
accurate doses.

Artificial Intelligence (Al) integration into proton therapy workflows offers promising potential to
address these complexities. Al-powered technologies enable the creation of adaptive treatment
protocols that leverage data-driven decision-making to improve treatment precision and
efficiency [1]. This article explores how Al advancements help manage uncertainties in proton
therapy, focusing on real-time adaptations to anatomical variations. Conventional workflows often
struggle to accommodate these variations effectively, which can lead to suboptimal outcomes. In
contrast, Al-based techniques offer automated solutions for online adaptive proton therapy,
integrating synthetic CT (sCT) generation, automated planning, and advanced quality assurance
(QA) protocols.

Back to Content
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Review Article

A narrative review of particle therapy in cancer

ABSTRACT

The use of high-energy charged particles in radiotherapy has evolved into an advanced cancer treatment. Even though proton beams and
carbon ions are currently the popular particles used for radiotherapy in cancer, ions such as pions, helium, argon, and neon were previously
used. To prepare this article, reviewed the literature relevant to the history, current status, and clinical outcomes of particle therapy for specific
types of tumors by searching in PubMed and Google Scholar using specific search terms. This article reviews the history, current status,
physics, and radiobiological advantages of particle therapy. Outcomes of particle therapy for sites such as the head-and-neck, central nervous
system, lung, and prostate have been discussed. The physical and biological properties of particle therapy have been shown to be effective
in reducing radiation-induced acute toxicities to a large extent as well as reducing the integral dose, i.e., the sum of dose delivered at every
point in a patient’s body, multiplied by the volume of tissue at each point and then added up over the entire treated volume. It is used to assess
the potential risks associated with radiation therapy. The advantages of particle therapy over conventional photon therapy in terms of overall
survival and local control rates have been described. Advances in image guidance and newer particle acceleration technologies have improved

the efficiency of particle therapy treatment.

Keywords: Carbon ion therapy, heavy ion therapy, proton pion, helium, argon, neon

INTRODUCTION

Radiation therapy plays a significant role in treating more than
50% of patients with cancer.!" Photon and electron therapy are
conventional radiation therapy techniques that have been used
for many years. They are effective in treating many types of
cancers, but can also damage healthy tissue surrounding the
tumor. Charged-particle therapy can reduce the dose to the
normal tissues and has been practiced for the past five decades,
with proton and carbon ion therapy being currently popular.
In addition to carbon ion and proton therapy, other particles
such as helium, pion, and neon are also used for particle
therapy.?! This type of therapy uses heavy charged particles
that have unique physical and biological properties such as
high linear energy transfer and low oxygen enhancement
ratio. Linear energy transfer is a measure of the amount of
energy that charged particles transfer to tissues as they travel
through them. Heavier charged particles have a higher energy
deposition rate, which can cause more damage to tumor cells
and result in a more effective cancer treatment. The oxygen
enhancement ratio is determined by comparing the amount of
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radiation needed to produce a specific biological effect in the
absence of oxygen to the amount of radiation needed to produce
the same effect under normal oxygen conditions. Tumor cells
usually have a lower oxygen concentration than normal tissue,
so particles with a low oxygen enhancement ratio may be more
effective in treating tumors. Particle therapy has unique depth
dose characteristics such as Bragg peak and sharp dose fall off,

MAYAKANNAN KRISHNAN!, RANJITH C. P.123
‘Department of Medical Physics, Center for Interdisciplinary
Research, D. Y. Patil Education Society (Deemed to be University),
Kolhapur, 2Department of Radiation Oncology, Advanced Center
for Treatment Research and Education in Cancer, Tata Memorial
Center, Kharghar, Navi Mumbai, Maharashtra, *Homi Bhabha
National Institute, Anushakti Nagar, Mumbai, India

Address for correspondence: Dr. Mayakannan Krishnan,
Department of Medical Physics, Center for Interdisciplinary
Research, D. Y. Patil Education Society (Deemed to be University),
Kolhapur, Maharashtra - 416006, India.

E-mail: kmayakannan.phy@gmail.com

This is an open access journal, and articles are distributed under the terms of the Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix,
tweak, and build upon the work non-commercially, as long as appropriate credit is given and
the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Krishnan M, Ranjith CP. A narrative review of
particle therapy in cancer. Cancer Res Stat Treat 2023;6:248-60.

Submitted: 17-Sep-2022 Revised: 27-May-2023
Accepted: 27-May-2023 Published: 02-Aug-2023

248 © 2023 Cancer Research, Statistics, and Treatment | Published by Wolters Kluwer - Medknow



IOP Publishing

® CrossMark

RECEIVED
29 November 2023

REVISED
28 March 2024

ACCEPTED FOR PUBLICATION
10 April 2024

PUBLISHED
22 April 2024

Biomed. Phys. Eng. Express 10 (2024) 035033

https://doi.org/10.1088,/2057-1976/ad3ce0

Biomedical Physics & Engineering Express

PAPER

An artificial neural network based approach for predicting the proton
beam spot dosimetric characteristics of a pencil beam scanning

technique

C P Ranjith"*®, Mayakannan Krishnan"* @, Vysakh Raveendran®®, Lalit Chaudhari’ and

Siddhartha Laskar?

! Department of Medical Physics, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University),

Kolhapur, Maharashtra, India

*> Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer, Homi Bhabha National

Institute, Mumbai, Maharashtra, India
* Author to whom any correspondence should be addressed.

E-mail: ranjithcp007@gmail.com, kmayakannan.phy@gmail.com, vysakhraveendran92@gmail.com, lalitnc2006@gmail.com and

laskarss@tmc.gov.in

Keywords: machine learning, pencil beam scanning, quality assurance, log file, proton therapy

Abstract

Utilising Machine Learning (ML) models to predict dosimetric parameters in pencil beam scanning
proton therapy presents a promising and practical approach. The study developed Artificial Neural
Network (ANN) models to predict proton beam spot size and relative positional errors using 9000
proton spot data. The irradiation log files as input variables and corresponding scintillation detector
measurements as the label values. The ANN models were developed to predict six variables: spot size
in the x-axis, y-axis, major axis, minor axis, and relative positional errors in the x-axis and y-axis. All
ANN models used a Multi-layer perception (MLP) network using one input layer, three hidden layers,
and one output layer. Model performance was validated using various statistical tools. The log file
recorded spot size and relative positional errors, which were compared with scintillator-measured
data. The Root Mean Squared Error (RMSE) values for the x-spot and y-spot sizes were 0.356 mm and
0.362 mm, respectively. Additionally, the maximum variation for the x-spot relative positional error
was 0.910 mm, while for the y-spot, it was 1.610 mm. The ANN models exhibit lower prediction
errors. Specifically, the RMSE values for spot size prediction in the x, y, major, and minor axes are
0.053 mm, 0.049 mm, 0.053 mm, and 0.052 mm, respectively. Additionally, the relative spot
positional error prediction model for the x and y axes yielded maximum errors of 0.160 mm and
0.170 mm, respectively. The normality of models was validated using the residual histogram and Q-Q
plot. The data over fit, and bias were tested using K (k = 5) fold cross-validation, and the maximum
RMSE value of the K fold cross-validation among all the six ML models was less than 0.150 mm (R-
Square 0.960). All the models showed excellent prediction accuracy. Accurately predicting beam spot
size and positional errors enhances efficiency in routine dosimetric checks.

1. Introduction

Integrating the pencil beam scanning (PBS) technique
into proton therapy systems (PTS) has significantly
improved dose conformity and accelerated beam
delivery, enhancing treatment precision compared to
the passive scattering technique. PBS does not rely on
physical apertures or range-modulating devices,
allowing for greater flexibility and efficiency in beam

delivery, including rapid switching between beam
energies and scan patterns. This versatility and preci-
sion enable PBS to dynamically adjust beam delivery in
real time, improving treatment efficiency. The inverse
planning technique of PBS, involving multiple sets of
energies and spot positions, has further advanced the
complexity of beam delivery techniques [1]. Despite
the presence of beamline components such as electro-
magnets for steering and focusing the beam and
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ARTICLE INFO ABSTRACT

Keywords: Purpose: Comprehensive Quality Assurance (QA) protocols are necessary for complex beam delivery systems like
Pencil beam scanning Pencil Beam Scanning (PBS) proton therapy. This study focuses on automating the evaluation of beam delivery
Log file

accuracy using irradiation log files and machine learning (ML) models.

Methods: Irradiation log files of 935 clinical treatment fields and routine QA beams were analysed to evaluate
spot parameters and Monitor Unit (MU) accuracy. ML models predicted spot size along the X, Y, major, and
minor axes. In-house scripts automated log file analysis and spot size predictions. Predicted spot sizes were
compared with expected baselines, and the accuracy of spot position, symmetry, and MU for each spot in the
beam was evaluated.

Results: More than 99.5 % of spot positions were accurate within a 1 mm. The mean and Standard Deviation (SD)
of X positional error were —0.021 mm (SD: 0.181 mm), and for Y positional error, they were —0.002 mm (SD:
0.132 mm). ML models accurately predicted spot sizes, with over 95 % of spots demonstrating size variations
within 10 % of the baseline. The Root Mean Squared Error (RMSE) of X and Y spot size differences were 0.15 mm
and 0.16 mm, respectively. Spot symmetry was within 10 %, and MU accuracy showed 95 % of spots with MU
per spot variation less than 2 %.

Conclusion: This method can validate the vendor’s beam delivery safety interlock system and serve as a quick
alternative to patient-specific QA in adaptive treatment, where time is limited, as well as for routine QA spot
parameter evaluations.

machine learning
QA automation
Proton therapy

1. Introduction

Achieving optimal clinical outcomes in radiotherapy depends on
precisely delivering the treatment as planned by the Treatment Planning
System (TPS) [1]. In Pencil Beam Scanning (PBS) proton therapy, where
proton spots are dynamically delivered with varying energies and po-
sitions, rigorous quality assurance (QA) protocols are essential [2]. The
American Association of Physicists in Medicine (AAPM) Task Group
(TG)-224 report [3] recommends regular verification of beam parame-
ters and Patient-Specific QA (PSQA). The spot profiles crucial for dose
distribution are influenced by beam optics, optimised during machine
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1 Oreid id: 0000-0002-4668-9099.
2 Orcid id: 0000-0003-2345-2029.
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installation and beam commissioning [4]. The baseline spot size for each
energy is the same across all gantry angles. However, since beam optics
are adjusted for each energy and gantry angle, slight variations in spot
size can occur. Therefore, routine QA checks spot size, position, and
symmetry at selected energies and angles. However, a treatment field
contains thousands of closely spaced spots with varying energies to
ensure adequate dose coverage and uniformity. Standard QA equipment
cannot assess the dosimetric accuracy of each spot in a treatment field.
So, the conventional PSQA procedure uses array detectors to measure
dose fluence at a fixed gantry angle and performs gamma analysis [5].
However, the measurement-based PSQA is resource-intensive, often

Received 13 June 2024; Received in revised form 10 September 2024; Accepted 28 October 2024
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DEVELOPMENT AND VALIDATION OF MACHINE LEARNING
APPROACH FOR PREDICTING PROTON THERAPY BEAM SPOT
CHARACTERISTICS
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PURPOSE/BACKGROUND: Machine learning (ML) approaches have evolved as a promising method for
enhancing and automating quality control and machine performance evaluation in advanced radiotherapy
techniques such as Proton beam therapy. Verifying the proton spot characteristics is a crucial quality assurance
(QA) test in Pencil Beam Scanning (PBS) proton therapy. These tests can be performed virtually using the
irradiation log file information rather than physical measurements. By employing ML techniques on log file
information, more robust and efficient QA procedures can be developed, reducing the time and human resources
required. This work focuses on developing and validating an Artificial Neural Network (ANN) model for
predicting spot dosimetric characteristics.

MATERIALS/METHODS: Dosimetric measurements of proton spots were conducted in the energy range of
70.2 MeV to 226 MeV using a scintillation-based detector in the IBA (Ion Beam Applications, Louvain-la-
Neuve, Belgium) proteus plus proton therapy machine. The corresponding irradiation log files were obtained
and compared with the measurement data, revealing certain inconsistencies. An ANN model was developed
using both measured and log file information to address this issue and to improve the accuracy of spot
dosimetric characteristic prediction. The ANN model was fine-tuned by determining the optimal number of
neurons and hidden layers, and the activation function and optimiser were selected through trial and error.
Separate ANN models were created to predict spot size and position. The accuracy of the model's predictions
was evaluated using various statistical tools.

RESULTS :The model's prediction accuracy was evaluated using different statistical metrics such as root mean
squared error, mean squared error, R-Square etc. All the spot size prediction model's RMSE was less than 0.05
mm with R square values greater than 99%. The different normality tests and residual plots show that the model
prediction is unbiased to the input data. The k-fold cross-validation R-square values are greater than 98% for all
the models.

CONCLUSION :A novel ANN-ML model was developed and validated for predicting the spot characteristics
based on log file data. This tool can be used in the clinical setting as a potential solution for automating the PBS

QA.
KEYWORDS: Proton therapy, Machine learning, Quality assurance, Log file analysis.
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Automation of Proton Beam Radiation Therapy Quality Assurance using
Machine Learning Models.
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The proton radiation therapy is the latest technology in the field of radiation therapy which is
used for cancer treatment [1]. The proton therapy using pencil beam scanning technique [2] require
more precise and accurate quality checks. In this study, we have developed and validated Machine
Learning (ML) algorithms [3] used for predicting the pencil beam proton beam spot size.

In our study, we have developed a multilayer perception [4] "= e

[Artificial Neural Network (ANN) model using the Machine Learning
(ML) platform of python programming language to predict the proton
therapy beam spot size using 1800 irradiation log files. The proton beam
spot was measured using Lynx2D (Scintillator detector) for energies
ranging from 70.18MeV to 226.2MeV. The model was trained using 70%
of the data and validated using 30% data. The Model validated using
various statistical tools. Figure 1: Proton beam spot

The model prediction means the square error is 0.0027mm with
an R-Square value of 0.99. The model was validated using the K fold .
cross-validation method (R-square 0.99). The ML model can be
effectively used for reducing QA time and efficiency.

The developed ML models can be used for effective quality ,
assurance of the proton beam therapy. Thus ensure the safety and T I N Yy -
accuracy of the therapy delivered to the cancer patients. Fig2: Residuals Histogram

References

Smith AR. Proton therapy. Physics in Medicine & Biology. 2006 Jun 20;51(13):R491.

2. Kooy HM et al. A case study in proton pencil-beam scanning delivery. International Journal of
Radiation Oncology* Biology* Physics. 2010 Feb 1;76(2):624-30.

3. Pillai M,et. al. Using artificial intelligence to improve the quality and safety of radiation therapy.
Journal of the American College of Radiology. 2019 Sep 1;16(9):1267-72.

4. Yagli GM,et al. Automatic hourly solar forecasting using machine learning models. Renewable and
Sustainable Energy Reviews. 2019 May 1;105:487-98.




AMPICON 2024

Souvenir of AMPICON 2024, November 8 - 10, 2024 at Hyderabad, India
P-1 AMC-0185
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Objective: The analysis of beam delivery accuracy is important in the Proton therapy system.
This study evaluates the accuracy of an in-house tool developed to analyse spot delivery
accuracy evaluation using irradiation log files.

Materials and Methods: This study, conducted on an IBA Proteus Plus machine, developed
an automated Machine Learning (ML) based script to assess the beam delivery accuracy of
PBS beam irradiation. The tool extracts log file data, analyzes spot parameters, predicts spot
sizes for all spots using ML models, and evaluates the accuracy of spot size, symmetry,
position, and MU per spot. A dataset of 500 irradiation beams and routine QA data was
utilized for the evaluation.

Results The ML model predicted spot size values for both X and Y directions, with RMSE
values under 0.12 mm. For patient beam data, 96% of spot position values were within 1 mm,
while all spot positions were within 0.5 mm for machine QA beams. However, the difference
between measured and log file recorded spot size showed a more than 6% standard deviation.
The MU values demonstrated a mean difference of 0.01 MU. Additionally, over 94% of spots
exhibited less than 10% symmetry deviations.

Conclusion: The automated script effectively analyzed the log file data and utilized ML
models to evaluate spot parameters in PBS. This approach is a viable alternative for rapidly
assessing all spot parameters in a patient's treatment beam. Additionally, it can be applied to

evaluate machine interlocks and performance.

Keywords: Pencil beam scanning, Log file, machine learning, QA automation.
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Introduction

Proton therapy is a sophisticated form of radiotherapy that utilises protons to deliver highly
precise radiation to tumours, offering a superior dose distribution profile compared to traditional
photon-based therapies. This precision allows for the sparing of surrounding healthy tissues,
making it particularly advantageous for tumours located near critical structures. Despite these
benefits, proton therapy is still susceptible to patient-specific variations, anatomical changes, and
daily setup inconsistencies, which present significant challenges to consistently delivering
accurate doses.

Artificial Intelligence (Al) integration into proton therapy workflows offers promising potential to
address these complexities. Al-powered technologies enable the creation of adaptive treatment
protocols that leverage data-driven decision-making to improve treatment precision and
efficiency [1]. This article explores how Al advancements help manage uncertainties in proton
therapy, focusing on real-time adaptations to anatomical variations. Conventional workflows often
struggle to accommodate these variations effectively, which can lead to suboptimal outcomes. In
contrast, Al-based techniques offer automated solutions for online adaptive proton therapy,
integrating synthetic CT (sCT) generation, automated planning, and advanced quality assurance
(QA) protocols.

Back to Content
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Review Article

A narrative review of particle therapy in cancer

ABSTRACT

The use of high-energy charged particles in radiotherapy has evolved into an advanced cancer treatment. Even though proton beams and
carbon ions are currently the popular particles used for radiotherapy in cancer, ions such as pions, helium, argon, and neon were previously
used. To prepare this article, reviewed the literature relevant to the history, current status, and clinical outcomes of particle therapy for specific
types of tumors by searching in PubMed and Google Scholar using specific search terms. This article reviews the history, current status,
physics, and radiobiological advantages of particle therapy. Outcomes of particle therapy for sites such as the head-and-neck, central nervous
system, lung, and prostate have been discussed. The physical and biological properties of particle therapy have been shown to be effective
in reducing radiation-induced acute toxicities to a large extent as well as reducing the integral dose, i.e., the sum of dose delivered at every
point in a patient’s body, multiplied by the volume of tissue at each point and then added up over the entire treated volume. It is used to assess
the potential risks associated with radiation therapy. The advantages of particle therapy over conventional photon therapy in terms of overall
survival and local control rates have been described. Advances in image guidance and newer particle acceleration technologies have improved

the efficiency of particle therapy treatment.

Keywords: Carbon ion therapy, heavy ion therapy, proton pion, helium, argon, neon

INTRODUCTION

Radiation therapy plays a significant role in treating more than
50% of patients with cancer.!" Photon and electron therapy are
conventional radiation therapy techniques that have been used
for many years. They are effective in treating many types of
cancers, but can also damage healthy tissue surrounding the
tumor. Charged-particle therapy can reduce the dose to the
normal tissues and has been practiced for the past five decades,
with proton and carbon ion therapy being currently popular.
In addition to carbon ion and proton therapy, other particles
such as helium, pion, and neon are also used for particle
therapy.?! This type of therapy uses heavy charged particles
that have unique physical and biological properties such as
high linear energy transfer and low oxygen enhancement
ratio. Linear energy transfer is a measure of the amount of
energy that charged particles transfer to tissues as they travel
through them. Heavier charged particles have a higher energy
deposition rate, which can cause more damage to tumor cells
and result in a more effective cancer treatment. The oxygen
enhancement ratio is determined by comparing the amount of
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radiation needed to produce a specific biological effect in the
absence of oxygen to the amount of radiation needed to produce
the same effect under normal oxygen conditions. Tumor cells
usually have a lower oxygen concentration than normal tissue,
so particles with a low oxygen enhancement ratio may be more
effective in treating tumors. Particle therapy has unique depth
dose characteristics such as Bragg peak and sharp dose fall off,
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Abstract

Utilising Machine Learning (ML) models to predict dosimetric parameters in pencil beam scanning
proton therapy presents a promising and practical approach. The study developed Artificial Neural
Network (ANN) models to predict proton beam spot size and relative positional errors using 9000
proton spot data. The irradiation log files as input variables and corresponding scintillation detector
measurements as the label values. The ANN models were developed to predict six variables: spot size
in the x-axis, y-axis, major axis, minor axis, and relative positional errors in the x-axis and y-axis. All
ANN models used a Multi-layer perception (MLP) network using one input layer, three hidden layers,
and one output layer. Model performance was validated using various statistical tools. The log file
recorded spot size and relative positional errors, which were compared with scintillator-measured
data. The Root Mean Squared Error (RMSE) values for the x-spot and y-spot sizes were 0.356 mm and
0.362 mm, respectively. Additionally, the maximum variation for the x-spot relative positional error
was 0.910 mm, while for the y-spot, it was 1.610 mm. The ANN models exhibit lower prediction
errors. Specifically, the RMSE values for spot size prediction in the x, y, major, and minor axes are
0.053 mm, 0.049 mm, 0.053 mm, and 0.052 mm, respectively. Additionally, the relative spot
positional error prediction model for the x and y axes yielded maximum errors of 0.160 mm and
0.170 mm, respectively. The normality of models was validated using the residual histogram and Q-Q
plot. The data over fit, and bias were tested using K (k = 5) fold cross-validation, and the maximum
RMSE value of the K fold cross-validation among all the six ML models was less than 0.150 mm (R-
Square 0.960). All the models showed excellent prediction accuracy. Accurately predicting beam spot
size and positional errors enhances efficiency in routine dosimetric checks.

1. Introduction

Integrating the pencil beam scanning (PBS) technique
into proton therapy systems (PTS) has significantly
improved dose conformity and accelerated beam
delivery, enhancing treatment precision compared to
the passive scattering technique. PBS does not rely on
physical apertures or range-modulating devices,
allowing for greater flexibility and efficiency in beam

delivery, including rapid switching between beam
energies and scan patterns. This versatility and preci-
sion enable PBS to dynamically adjust beam delivery in
real time, improving treatment efficiency. The inverse
planning technique of PBS, involving multiple sets of
energies and spot positions, has further advanced the
complexity of beam delivery techniques [1]. Despite
the presence of beamline components such as electro-
magnets for steering and focusing the beam and
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ARTICLE INFO ABSTRACT

Keywords: Purpose: Comprehensive Quality Assurance (QA) protocols are necessary for complex beam delivery systems like
Pencil beam scanning Pencil Beam Scanning (PBS) proton therapy. This study focuses on automating the evaluation of beam delivery
Log file

accuracy using irradiation log files and machine learning (ML) models.

Methods: Irradiation log files of 935 clinical treatment fields and routine QA beams were analysed to evaluate
spot parameters and Monitor Unit (MU) accuracy. ML models predicted spot size along the X, Y, major, and
minor axes. In-house scripts automated log file analysis and spot size predictions. Predicted spot sizes were
compared with expected baselines, and the accuracy of spot position, symmetry, and MU for each spot in the
beam was evaluated.

Results: More than 99.5 % of spot positions were accurate within a 1 mm. The mean and Standard Deviation (SD)
of X positional error were —0.021 mm (SD: 0.181 mm), and for Y positional error, they were —0.002 mm (SD:
0.132 mm). ML models accurately predicted spot sizes, with over 95 % of spots demonstrating size variations
within 10 % of the baseline. The Root Mean Squared Error (RMSE) of X and Y spot size differences were 0.15 mm
and 0.16 mm, respectively. Spot symmetry was within 10 %, and MU accuracy showed 95 % of spots with MU
per spot variation less than 2 %.

Conclusion: This method can validate the vendor’s beam delivery safety interlock system and serve as a quick
alternative to patient-specific QA in adaptive treatment, where time is limited, as well as for routine QA spot
parameter evaluations.

machine learning
QA automation
Proton therapy

1. Introduction

Achieving optimal clinical outcomes in radiotherapy depends on
precisely delivering the treatment as planned by the Treatment Planning
System (TPS) [1]. In Pencil Beam Scanning (PBS) proton therapy, where
proton spots are dynamically delivered with varying energies and po-
sitions, rigorous quality assurance (QA) protocols are essential [2]. The
American Association of Physicists in Medicine (AAPM) Task Group
(TG)-224 report [3] recommends regular verification of beam parame-
ters and Patient-Specific QA (PSQA). The spot profiles crucial for dose
distribution are influenced by beam optics, optimised during machine
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installation and beam commissioning [4]. The baseline spot size for each
energy is the same across all gantry angles. However, since beam optics
are adjusted for each energy and gantry angle, slight variations in spot
size can occur. Therefore, routine QA checks spot size, position, and
symmetry at selected energies and angles. However, a treatment field
contains thousands of closely spaced spots with varying energies to
ensure adequate dose coverage and uniformity. Standard QA equipment
cannot assess the dosimetric accuracy of each spot in a treatment field.
So, the conventional PSQA procedure uses array detectors to measure
dose fluence at a fixed gantry angle and performs gamma analysis [5].
However, the measurement-based PSQA is resource-intensive, often
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Research”, [ am directed to inform you that you have been given provisional admission for
Ph.D. Programme under the faculty of interdisciplinary studies.

Considering your research interest, title and requirement of the topic you will be allotted
guide/supervisor.

You are required to give the Joining Report with original documents within seven days. The
fees to be paid are as follows:

1. Registration Fee Rs.2,000/- (One time}
2. Tuition Fee Rs.50,000/- (Per annum)
3. Development Fee Rs. 5,000/-( Per annum)

Total- Rs. 57, 000/-

The tenure of the programme will be as per UGC norms i.e. minimum 3 years to maximum
6 years.

REGISTRAR

Copy to: 1. Research Director
2. Accounts Section
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No Objection Certificate

This is to certify that Mr. Ranjith C P is working in the employment
of TMC-ACTREC since 315t May, 2021 and at present holding the post of
Medical Physicist ‘D’ in the pay matrix Level 11 at ACTREC of TMC.

This centre has no objection for him to apply for Ph.D. program in
Physics/Medical Physics/Radiation Physics subject at D. Y. Patil Education
Society, Kolhapur.

&
(S. V. Deshmukh)
Asst Administrative Officer

I, 41 §9% - ¥90 290, HA. Khargr;\;nar‘ ’
R AL it Navi Mumbai - 410 210. INDIA.
SIHIY ety =R
R :“?_3-_:,5.,&?,;;: Phone: +91 - 22 - 2740 5000
UL A e +91 - 22 - 6873 5000

i = . Fax:  +81-22 - 2740 5085
E-mail : mail@actrec.gov.in .
6T ATl B W hH? 47k B HhAr £ | Website : www.actrec.gov.in Cancer is curable, if detected early.
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EDUCATION SOCIETY
KOLHAPUR

(INSTITUTION DEEMED TO BE UNIVERSITY)
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No. DYPEU/DU/Ph.D.[2022/1136 Date: 27.04.2022

To,

Ranjith CP
kunnathirikunnu house,
Eldankur manhappatta,
Keral.

Sub: Confirmation of registration to Ph.D. degree program.
Ref.: DYPES/DU/Ph.D.[2513 date: 13.10.2021, PRN - 2021013020.

Dear Student,

I am directed to inform you that you have been registered to Ph.D. degree program in Physics in the
Faculty of Interdisciplinary Studies, w.e.f. 13.10.2021 [Registration No. DYPES/DU/Ph.D/2513 dated:
13.10.2021] under the guidance of Dr. K. Mayakannan.

The Research and Recognition Committee has approved your title of proposed research work as

“Implementation of Machine Learning in the Proton Therapy Quality Assurance.”

The Research and Recognition Committee has resolved to implement the following rule:

“The researcher is expected to review six monthly progress presentations with his/her research
advisory committee. Any deviation from the approved protocol i.e. reflected in the title must have
approval of concerned research advisory committee and must be recommended by the chairperson
of the research committee”.

Please note that you will have to work fulltime; otherwise your admission will be discontinued.
Please also note that your admission is subject to various conditions as laid down in UGC (Minimum

Standard and Procedure for the award of Ph.D. Degree) Regulation 2016.

Qg

Registrar

Copy to: Concerned Ph.D. Supervisor

address: 869, 'E', D. V. Patil Vidyanagar, Kolhapur-416 006 | phone: (0231) 2601235-36
fax: (0231) 2601595 | email: info@dypatilkolhapur.org | website: www.dypatilunikop.org



FIL MEDICAL COLLEGE KOLHAPUR

stiuent Unit of D. Y. Patil Education Society (Deemed to be University),Kolhapur.
Re-accredited by NAAC with ‘A’ Grade

"‘Dr. Rakesh Kumar Sharma Padmashree Dr. D.Y. Patil Dr. Sanjay D. Patil
Dean & Professor (Obst. & Gyn) Founder president President
No. DYPMCK/......))...../12022 [TEC Date:

2 4 JUN 2022

INSTITUTIONAL ETHICS COMMITTEE, D. Y. PATIL MEDICAL COLLEGE, KOLHAPUR,

This is to certify that the research project titled,

\Implementation of Machine Learning in the Proton Therapy Quality Assurance.”

Submitted by : Mr. Ranjith C. P,
Under the supervision of appointed Guide (if any): Dr. K. Mayakannan

Has been studied by the Institutional Ethics Committee (IEC) at its meeting held on 07/04/2022 and after
corrected has granted approval for the study with due effect with the following caveats:

1. If you desire any change in the protocol or standard recording document at any time, please submit
the same to the IEC for information and approval before the change is implemented.

2. As per recommendations of ICMR, you must register your study with the Central Trials Registry-
India (CTRI), hosted at the ICMR's National Institute of Medical Statistics (http://icmr-nims.nic.in).
The registration details as provided by the website are to be submitted to the Institutional Ethics
Committee within a period of 3 months from issue of this letter.

3.  All serious and/or unexpected adverse events due to the drug/procedures tested in the study must
be informed to the IEC within 24 hours and steps for appropriate treatment must be immediately
instituted.

4. In case of injury/disability/death of any participant attributable to the drug/procedure under study,
all compensation is to be made by the sponsor of the study.

5. The Chief investigator/Researcher must inform the IEC immediately if the study is terminated earlier
than planned with the reasons for the same. 3

6. The final results of the study must be communicated to the IEC within 3 months of the completion of
data collection.

7. The researcher must take all precautions to safeguard the rights, safety, dignity and wellbeing of the
participants in the study.

8. The researcher must be up to date about all information regarding the risk/benefit ratio of any
drug/procedure being used and any new information must be conveyed to the 1EC immediately. The
IEC reserves the right to change a decision on the project in the light of any new knowledge.

9. Before publishing the results of the study, the researcher must take permission from the Dean of the
Institution.

10. Annual progress report should be submitted for all sponsored projects to the committee,

11. Unethical conduct of research in non-sponsored projects will result in withdrawal of the ethics
approval and negation of all data collected till that date.

/ . Shimpa R. Sharma

Dr. @rdy Sisrapy Sithrma
Member Secretary,
Inlﬂlymnd Ethice Commities

D. Y. Patil Medical
Address : 869, 'E' Ward, D.Y. Patil Vidyanagar, Kasaba Bawada, Kolhapur - 416 006 (MS) INDIA | Phone No.:(0231) 2601235- 36
Fax : (0231) 2601238, | Email. dypatiimedicalcollege@gmail.com | Website : www.dypatilmedicalkop.org
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Permission Letter
date: 18/04/2022

Ranjith C P is a Medical physicist working under my supervision in the department of Radiation
Oncology, ACTREC, Tata memorial center, Mumbai. Here, | am giving permissian to him for collecting
the required data fram the Proton therapy treatment log files and from the Treatment Planning
System which will be required for his Ph.D. work. He is also allowed to conduct Proton Beam-
measurements related to his course of Ph.D. which is registered in the Centre for Interdisciplinary

studies, D.Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra.

ke

Reena De-vi Ph

sr. Medical physicist and Radiation Safety Officer (RSO)-HI
ACTREC

Tata memorial center

DAE, Mumbai
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